Skip to main content

Continuous Monitoring of Organ Chemistry — a Paradigm Shift in Management of Intensive Care

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.

Abstract

For decades we have discussed the possibilities that will open up once we have biosensors that can be implanted into individual organs providing us with invaluable bedside information about their metabolic state during intensive care. However, developing such sensors has proven much more difficult than anyone could have foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    PubMed  CAS  Google Scholar 

  2. Ungerstedt U (1991) Microdialysis—principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  3. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U (1990) Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci 46:301–308

    Article  PubMed  CAS  Google Scholar 

  4. Bolinder J, Hagstrom E, Ungerstedt U, Arner P (1989) Microdialysis of subcutaneous adipose tissue in vivo for continuous glucose monitoring in man. Scand J Clin Lab Invest 49:465–474

    Article  PubMed  CAS  Google Scholar 

  5. Reinstrup P, Stahl N, Mellergard P et al (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709; discussion 709–710

    Article  PubMed  CAS  Google Scholar 

  6. Hillered L, Persson L (1999) Neurochemical monitoring of the acutely injured human brain. Scand J Clin Lab Invest Suppl 229:9–18

    Article  PubMed  CAS  Google Scholar 

  7. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45:1176–1184; discussion 1184–1185

    Article  PubMed  CAS  Google Scholar 

  8. Sarrafzadeh AS, Unterberg AW, Lanksch WR (1998) Bedside-microdialysis for early detection of vasospasm after subarachnoid hemorrhage. Case report and review of the literature. Zentralbl Neurochir 59:269–273

    PubMed  CAS  Google Scholar 

  9. Hillered L, Valtysson J, Enblad P, Persson L (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64:486–491

    PubMed  CAS  Google Scholar 

  10. Arner P, Bolinder J, Eliasson A et al (1988) Microdialysis of adipose tissue and blood for in vivo lipolysis studies. Am J Physiol 255:E737–E742

    PubMed  CAS  Google Scholar 

  11. Bartness TJ, Song CK (2007) Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res 48:1655–1672

    Article  PubMed  CAS  Google Scholar 

  12. Clough GF (2005) Microdialysis of large molecules. AAPS J 7:E686–E692

    Article  PubMed  CAS  Google Scholar 

  13. Hillman J, Milos P, Yu ZQ et al (2006) Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD). Acta Neurochir (Wien) 148:319–324; discussion 324

    Article  CAS  Google Scholar 

  14. Bouw R, Ederoth P, Lundberg J et al (2001) Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anaesthesiol Scand 45:390–392

    Article  PubMed  CAS  Google Scholar 

  15. Gustafsson J, Eriksson J, Marcus C (2007) Glucose metabolism in human adipose tissue studied by 13C-glucose and microdialysis. Scand J Clin Lab Invest 67:155–164

    Article  PubMed  CAS  Google Scholar 

  16. Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P (2004) Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 100:8–15

    Article  PubMed  CAS  Google Scholar 

  17. Sarrafzadeh AS, Sakowitz OW, Callsen TA et al (2000) Bedside microdialysis for early detection of cerebral hypoxia in traumatic brain injury. Neurosurg Focus 9:e2

    PubMed  CAS  Google Scholar 

  18. Udesen A, Lontoft E, Kristensen SR (2000) Monitoring of free TRAM flaps with microdialysis. J Reconstr Microsurg 16:101–106

    Article  PubMed  CAS  Google Scholar 

  19. Edsander-Nord A, Rojdmark J, Wickman M (2002) Metabolism in pedicled and free TRAM flaps: a comparison using the microdialysis technique. Plast Reconstr Surg 109:664–673

    Article  PubMed  Google Scholar 

  20. Hillered L, Persson L, Ponten U, Ungerstedt U (1990) Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir (Wien) 102:91–97

    Article  CAS  Google Scholar 

  21. Stahl N, Meilergard P, Hallstrom A et al (2001) Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 45:977–985

    Article  PubMed  CAS  Google Scholar 

  22. Stahl N, Schalen W, Ungerstedt U, Nordstrom CH (2003) Bedside biochemical monitoring of the penumbra zone surrounding an evacuated acute subdural haematoma. Acta Neurol Scand 108:211–215

    Article  PubMed  CAS  Google Scholar 

  23. Nilsson OG, Polito A, Saveland H et al (2006) Are primary supratentorial intracerebral hemorrhages surrounded by a biochemical penumbra? A microdialysis study. Neurosurgery 59:521–528; discussion 528

    Article  PubMed  Google Scholar 

  24. Rojdmark J, Blomqvist L, Malm M et al (1998) Metabolism in myocutaneous flaps studied by in situ microdialysis. Scand J Plast Reconstr Surg Hand Surg 32:27–34

    Article  PubMed  CAS  Google Scholar 

  25. Brix M, Muret P, Mac-Mary S et al (2006) Microdialysis of cutaneous free flaps to monitor results of maxillofacial surgery. Rev Stomatol Chir Maxillofac 107:31–37

    Article  PubMed  CAS  Google Scholar 

  26. Setala L, Papp A, Romppanen EL et al (2006) Microdialysis detects postoperative perfusion failure in microvascular flaps. J Reconstr Microsurg 22:87–96

    Article  PubMed  Google Scholar 

  27. Oldner A, Goiny M, Ungerstedt U, Sollevi A (1996) Splanchnic homeostasis during endotoxin challenge in the pig as assessed by microdialysis and tonometry. Shock 6:188–193

    PubMed  CAS  Google Scholar 

  28. Ungerstedt J, Nowak G, Ericzon BG, Ungerstedt U (2003) Intraperitoneal microdialysis (IPM): a new technique for monitoring intestinal ischemia studied in a porcine model. Shock 20:91–96

    Article  PubMed  Google Scholar 

  29. Jansson K, Ungerstedt J, Jonsson T et al (2003) Human intraperitoneal microdialysis: increased lactate/pyruvate ratio suggests early visceral ischaemia. A pilot study. Scand J Gastroenterol 38:1007–1011

    Article  PubMed  CAS  Google Scholar 

  30. Jansson K, Jansson M, Andersson M et al (2005) Normal values and differences between intraperitoneal and subcutaneous microdialysis in patients after non-complicated gastrointestinal surgery. Scand J Clin Lab Invest 65:273–281

    Article  PubMed  CAS  Google Scholar 

  31. Norgren L, Jansson K (2004) Intraperitoneal and intraluminal microdialysis in the detection of experimental regional intestinal ischaemia. Br J Surg 91:855–861

    Article  Google Scholar 

  32. Solligard E, Juel IS, Bakkelund K et al (2004) Gut barrier dysfunction as detected by intestinal luminal microdialysis. Intensive Care Med 30:1188–1194

    Article  PubMed  Google Scholar 

  33. Solligard E, Juel IS, Bakkelund K et al (2005) Gut luminal microdialysis of glycerol as a marker of intestinal ischemic injury and recovery. Crit Care Med 33:2278–2285

    Article  PubMed  CAS  Google Scholar 

  34. Nowak G, Ungerstedt J, Wernerman J et al (2002) Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl 8:424–432

    Article  PubMed  Google Scholar 

  35. Nowak G, Ungerstedt J, Wernerman J et al (2002) Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation. Br J Surg 89:1169–1175

    Article  PubMed  CAS  Google Scholar 

  36. Nowak G, Ungerstedt J, Wernerson A et al (2003) Hepatic cell membrane damage during cold preservation sensitizes liver grafts to rewarming injury. J Hepatobiliary Pancreat Surg 10:200–205

    Article  PubMed  Google Scholar 

  37. Silva MA, Richards DA, Bramhall SR et al (2005) A study of the metabolites of ischemia-reperfusion injury and selected amino acids in the liver using microdialysis during transplantation. Transplantation 79:828–835

    Article  PubMed  CAS  Google Scholar 

  38. Vanhorebeek I, Langouche L, Van den Berghe G (2007) Tight blood glucose control with insulin in the ICU: facts and controversies. Chest 132:268–278

    Article  PubMed  CAS  Google Scholar 

  39. Diaz-Parejo P, Stahl N, Xu W et al (2003) Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med 29:544–550

    PubMed  Google Scholar 

  40. Vlasselaers D, Schaupp L, van den Heuvel I et al (2007) Monitoring blood glucose with microdialysis of interstitial fluid in critically ill children. Clin Chem 53:536–537

    Article  PubMed  CAS  Google Scholar 

  41. Bounder J, Ungerstedt U, Arner P (1992) Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia 35:1177–1180

    Article  Google Scholar 

  42. Rosdahl H, Ungerstedt U, Jorfeldt L, Henriksson J (1993) Interstitial glucose and lactate balance in human skeletal muscle and adipose tissue studied by microdialysis. J Physiol 471:637–657

    PubMed  CAS  Google Scholar 

  43. Kavianipour M, Wikstrom G, Ronquist G, Waidenstrom A (2003) Validity of the microdialysis technique for experimental in vivo studies of myocardial energy metabolism. Acta Physiol Scand 179:61–65

    Article  PubMed  CAS  Google Scholar 

  44. Valen G, Owall A, Takeshima S et al (2004) Metabolic changes induced by ischemia and cardioplegia: a study employing cardiac microdialysis in pigs. Eur J Cardiothorac Surg 25:69–75

    Article  PubMed  Google Scholar 

  45. Mantovani V, Kennergren C, Goiny M et al (2006) Microdialysis for myocardial metabolic surveillance: developing a clinical technique. Clin Physiol Funct Imaging 26:224–231

    Article  PubMed  CAS  Google Scholar 

  46. Backstrom T, Franco-Cereceda A (2004) Intravasal microdialysis is superior to intramyocardial microdialysis in detecting local ischaemia in experimental porcine myocardial infarction. Acta Physiol Scand 180:5–12

    Article  PubMed  CAS  Google Scholar 

  47. Kennergren C, Mantovani V, Lonnroth P et al (1999) Monitoring of extracellular aspartate aminotransferase and troponin T by microdialysis during and after cardioplegic heart arrest. Cardiology 92:162–170

    Article  PubMed  CAS  Google Scholar 

  48. Poling J, Rees W, Mantovani V et al (2006) Evaluation of myocardial metabolism with microdialysis during bypass surgery with cold blood-or Calafiore cardioplegia. Eur J Cardiothorac Surg 30:597–603

    Article  PubMed  Google Scholar 

  49. Mantovani V, Kennergren C, Berglin E et al (2002) Intramyocardial troponin-T monitoring with microdialysis in coronary artery bypass surgery. Scand Cardiovasc J 36:308–312

    Article  PubMed  CAS  Google Scholar 

  50. Bahlmann L, Misfeld M, Klaus S et al (2004) Myocardial redox state during coronary artery bypass grafting assessed with microdialysis. Intensive Care Med 30:889–894

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this paper

Cite this paper

Ungerstedt, U. (2008). Continuous Monitoring of Organ Chemistry — a Paradigm Shift in Management of Intensive Care. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-0773-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0773-4_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0772-7

  • Online ISBN: 978-88-470-0773-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics