Perioperative Care in Neurosurgery — Intraoperative Monitoring

  • C. Ori
  • M. Munari
  • S. Volpin
Conference paper


Intraoperative monitoring of neuronal function, cerebral haemodynamics and cerebral oxygenation provides information to guide anaesthetic and surgical procedures in individual patients. The aim of neuroanaesthesia is to provide optimal intracranial operating conditions, maintain cerebral perfusion pressure (CPP), protect against ischaemic insults and prevent postoperative complications. The anaesthetic techniques and the anaesthetics used in neuroanaesthesia are all geared to these objectives. A neurophysiologically monitored surgical approach can decrease neuronal injury and neurological deficit related to cerebral ischaemia and improve long-term neurological outcome. Traditionally, electrocardiography, arterial blood pressure, pulse oximetry, end-tidal CO2 (ETCO2), body temperature and urine output are monitored during neuroanaesthesia in the operating room.


Cerebral Perfusion Pressure Cerebral Oxygen Somatosensory Evoke Potential Aneurysm Surgery Ischaemic Insult 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Himmelseher S, Pfenninger E, Werner C et al (2001) Intraoperative monitoring in neuroanesthesia: a national comparison between two surveys in Germany in 1991 and 1997. Anesth Analg 92:166–171PubMedCrossRefGoogle Scholar
  2. 2.
    The American Society of Anesthesiologists. Standards for basic anesthetic monitoring. ASA directory of members (Approved by House of Delegates on October 21, 1986, and last amended on October 21, 1998)Google Scholar
  3. 3.
    Fabregas N, Gomar C (2001) Monitoring in neuroanaesthesia: update of clinical usefulness. European J Anaesth 18:423–439CrossRefGoogle Scholar
  4. 4.
    Rothoerl RD, Schebesch KM, Woertgen C et al (2003) Internal carotid artery volume flow correlates to rCBF measurements. Acta Neurochir 145:943–947CrossRefGoogle Scholar
  5. 5.
    Friedmam JA, Anderson RE, Meyer FB (2000) Techniques of intraoperative cerebral blood flow measurement. Neurosurg Focus 15:9Google Scholar
  6. 6.
    Moppett IK and Mahajan RP (2004) Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth 93:710–724PubMedCrossRefGoogle Scholar
  7. 7.
    Conti A, Iacopino DG, Fodale V et al (2006) Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth 97:333–339PubMedCrossRefGoogle Scholar
  8. 8.
    Ackerstaff RG, Chuck JW, van de Vlasakker CJ (1998) Monitoring of brain function during carotid endoarterectomy: an analysis of contemporary methods. J Cardiothorac Vasc Anesth 12:341–347PubMedCrossRefGoogle Scholar
  9. 9.
    Ackerstaff RG, Moons KG, van de Vlasakker CJ et al (2000) Association of intraoperative transcranial Doppler monitoring variables with stroke from carotid endarterectomy. Stroke 31:1817–1823PubMedGoogle Scholar
  10. 10.
    Muller M, Reiche W, Langenscheidt P et al (2000) Ischemia after carotid endoarterectomy: comparison between transcranial Doppler sonography and diffusion-weighted MR imaging. Am J Neuroradiol 21:47–54PubMedGoogle Scholar
  11. 11.
    Dunne VG, Besser M, Ma WJ (2001) Transcranial Doppler in carotid endoarterectomy. J Clin Neurosci 8:140–145PubMedCrossRefGoogle Scholar
  12. 12.
    Matta BF, Lam AM, Winn HR (1995) The intraoperative use of transcranial Doppler ultrasonography during resection of arteriovenous malformations. Br J Anaesth 75:242Google Scholar
  13. 13.
    Firsching R, Synowitz HJ, Hanebeck J (2000) Practicability of intraoperative microvascular Doppler sonography in aneurysm surgery. Minim Invasive Neurosurg 43:144–148PubMedCrossRefGoogle Scholar
  14. 14.
    Stendel R, Pietila T, Al Hassan AA et al (2000) Intraoperative microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurol Neurosurg Psychiatry 68:29–35PubMedCrossRefGoogle Scholar
  15. 15.
    Amin-Hanjani S, Meglio G, Gatto R et al (2007) The utility of intraoperative blood flow measurement during aneurysm surgery using an ultrasonic perivascular flow probe. Neurosurgery 58: ONS–305CrossRefGoogle Scholar
  16. 16.
    Charbel FT, Zhao M, Amin-Hanjani S et al (2004) A patient-specific computer model to predict outcomes to the balloon occlusion test. J Neurosurg 101:977–988PubMedGoogle Scholar
  17. 17.
    Scienza R, Pavesi G, Pasqualin A et al (2003) Flowmetry-assisted aneurysm clipping. A Cooperative Study. In The Proceedings of the 12 European Congress of Neurosurgery, 309–314Google Scholar
  18. 18.
    Sloan TB (1996) Evoked potentials monitoring. Int Anesthesiol Clin 34:109–136PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez JR (1996) Intraoperative neurophysiologic monitoring. Int Anesthesiol Clin 34:33–54PubMedCrossRefGoogle Scholar
  20. 20.
    Guerit JM (1998) Neuromonitoring in the operating room: why, when and how to monitor? Electroencephalogr Clin Neurophysiol 106:1–21PubMedGoogle Scholar
  21. 21.
    Kumar A, Bhattacharya A, Makhija N (2000) Evoked potential monitoring in anaesthesia analgesia. Anaesthesia 55:225–241PubMedCrossRefGoogle Scholar
  22. 22.
    Wiedemayer H, Sandalcioglu IE, Armbruster W et al (2004) False negative findings in intraoperative SEP monitoring: analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry 75:280–286PubMedGoogle Scholar
  23. 23.
    Florence G, Guerit JM, Gueguen B (2004) Electroencephalography (EEG) and somatosensory evoked potentials (SEP) to prevent cerebral ischaemia in the operating room. Neurophysiol Clin 34:17–32PubMedCrossRefGoogle Scholar
  24. 24.
    Nuwer MR (1993) Intraoperative electroencephalography. J Clin Neurophysiol 10:437–444PubMedCrossRefGoogle Scholar
  25. 25.
    Kearse LA, Martin D, McPeck K et al (1993) Computer-derived spectral array in detection of mild analog electroencephalographic ischemic pattern changes during carotid endarterectomy. J Nuerosurg 78:884–890Google Scholar
  26. 26.
    Rampil IJ, Correll JW, Rosenbaum SH et al (1983) Computerized electroencephalogram monitoring and carotid artery shunting. Neurosurgery 13:276–279PubMedCrossRefGoogle Scholar
  27. 27.
    Minicucci C, Cursi M, Fornara C et al (2000) Computer-assisted EEG monitoring during carotid endarterectomy. J Clin Neurophysiol 17:101–107PubMedCrossRefGoogle Scholar
  28. 28.
    Chiappa KH (1983) Evoked potentials in clinical medicine. New YorkGoogle Scholar
  29. 29.
    Halliday HL (1983) Evoked potentials in clinical testing. Edinburgh, Churchill LivingstoneGoogle Scholar
  30. 30.
    Grundy BL (1985) Intraoperative application of evoked responses. In: Owen JH, Davis H (eds) Evoked potential testing: clinical applications. Orlando, Grune & Stratton, pp 159–212Google Scholar
  31. 31.
    Liu EH, Wong HK, Chia CP et al (2005) Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br J Anaesth 94:193–197PubMedCrossRefGoogle Scholar
  32. 32.
    Prior PF (1988) EEG monitoring and evoked potentials in brain ischemia. Br J Anaesth 57:63–81CrossRefGoogle Scholar
  33. 33.
    Holland NR (1998) Subcortical strokes from intracranial aneurysm surgery: implications for intraoperative neuromonitoring. J Clin Neurophysiol 15:439–446PubMedCrossRefGoogle Scholar
  34. 34.
    Neuloh G, Pechstein U, Cedzich C et al (2004) Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg 100:389–399PubMedGoogle Scholar
  35. 35.
    Romstock J, Fahlbush R, Ganslandt O et al (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somotosensory evoked potentials. J Neurol Neurosurg Psychiatry 72:221–229PubMedCrossRefGoogle Scholar
  36. 36.
    Keles GE, Lundin DA, Lamborn KR et al (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369–375PubMedGoogle Scholar
  37. 37.
    Romstock J, Strauss C, Fahlbush R (2000) Continuous electromyography monitoring of cranial nerves during cerebellopontine angle surgery. J Neurosurg 93:586–593PubMedGoogle Scholar
  38. 38.
    Macmillan CS, Andrews PJ (2000) Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med 26:1028–1036PubMedCrossRefGoogle Scholar
  39. 39.
    Matta BF, Lam AM, Mayberg TS et al (1994) The influence of arterial oxygenation on cerebral venous oxygen saturation during hyperventilation. Can J Anaesth 41:1041–1046PubMedCrossRefGoogle Scholar
  40. 40.
    De Deyne C, Van Aken J, Decruyenaere J et al (1998) Jugular bulb oximetry: review on a cerebral monitoring technique. Acta Anaesthesiol Belg 49:21–31PubMedGoogle Scholar
  41. 41.
    Calderon-Arnulphi M, Alaraj A, Amin-Hanjani S et al (2007) Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J Neurosurg 106:283–290PubMedCrossRefGoogle Scholar
  42. 42.
    Gelabert-Gonzales M, Fernandez-Villa JM, Ginesta-Galan V (2002) Intra-operative monitoring of brain tissue O2 (PtiO2) during aneurysm surgery. Acta Neurochir 144:863–867CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • C. Ori
    • 1
  • M. Munari
    • 1
  • S. Volpin
    • 1
  1. 1.Department of Pharmacology and Anaesthesiology, Anaesthesia and Intensive Care UnitUniversity of PaduaPaduaItaly

Personalised recommendations