Sepsis is defined as the host response to invasive infection [1]. But while the trigger — infection — typically originates outside the host, the response that drives the phenotype of the illness arises endogenously. As a consequence, it is highly, and perhaps counterintuitively, shaped by pre-existing factors within the host that predispose him or her to a distinctive risk of acquiring infection, and having acquired that infection, of surviving the acute illness.


Septic Shock Severe Sepsis Invasive Pneumococcal Disease Drotrecogin Alfa Factor Versus Leiden Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bone RC, Balk RA, Cerra FB et al (1992) ACCP/SCCM CONSENSUS CONFERENCE. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655PubMedCrossRefGoogle Scholar
  2. 2.
    Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538PubMedGoogle Scholar
  3. 3.
    Sorenson TI, Nielsen GG, Andersen PK, Teasdale PW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732CrossRefGoogle Scholar
  4. 4.
    Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237PubMedCrossRefGoogle Scholar
  5. 5.
    International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  6. 6.
    Lazarus R, Vercelli D, Palmer LJ et al (2002) Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev 190:9–25PubMedCrossRefGoogle Scholar
  7. 7.
    Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124:1103–1115PubMedCrossRefGoogle Scholar
  8. 8.
    Arcaroli J, Fessier MB, Abraham E (2005) Genetic polymorphisms and sepsis. Shock 24:300–312PubMedCrossRefGoogle Scholar
  9. 9.
    Clark MF, Baudoin SV (2006) A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32:1706–1712PubMedCrossRefGoogle Scholar
  10. 10.
    Dahmer MK, Randolph A, Vitali S, Quasney MW (2005) Genetic polymorphisms in sepsis. Pediatr Crit Care Med 6(3 Suppl):S61–S73PubMedCrossRefGoogle Scholar
  11. 11.
    Imahara SD, O’Keefe GE (2007) Genetic determinants of the inflammatory response. Curr Opin Crit Care 10:318–324CrossRefGoogle Scholar
  12. 12.
    Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32:569–579PubMedCrossRefGoogle Scholar
  13. 13.
    van Deventer SJ, Biiller HR, Ten Cate JW et al (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76:2520–2526PubMedGoogle Scholar
  14. 14.
    Tracey KJ, Fong Y, Hesse DG et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664PubMedCrossRefGoogle Scholar
  15. 15.
    Hinshaw LB, Tekamp-Olson P, Chang AC et al (1990) Survival of primates in LD100 septic shock following therapy with antibody to tumor necrosis factor (TNF alpha). Circ Shock 30:279–292PubMedGoogle Scholar
  16. 16.
    Panacek EA, Marshall JC, Albertson TE et al (2004) Efficacy and safety of the monoclonal anti-TNF antibody F(ab’)2 fragment afelimomab in patients with severe sepsis stratified by IL-6 level. Crit Care Med 32:2173–2182PubMedGoogle Scholar
  17. 17.
    Marshall JC (2003) Such stuff as dreams are made on: Mediator-targeted therapy in sepsis. Nature Rev Drug Disc 2:391–405CrossRefGoogle Scholar
  18. 18.
    Lipsky PE, van der Heijde DM, St Clair EW et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 343:1594–1602PubMedCrossRefGoogle Scholar
  19. 19.
    Rutgeerts P, Van Assche G, Vermeire S (2004) Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology 126:1593–1610PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson AG, de Vries N, Pociot F et al (1993) An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med 177:557–560PubMedCrossRefGoogle Scholar
  21. 21.
    Wilson AG, Symons JA, McDowell TL et al (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199PubMedCrossRefGoogle Scholar
  22. 22.
    Mira JP, Cariou A, Grall F et al (1999) Association of TNF2, a TNF-a promoter polymorphism, with septic shock susceptibility and mortality. JAMA 282:561–568PubMedCrossRefGoogle Scholar
  23. 23.
    Appoloni O, Dupont E, Vandercruys M et al (2001) Association of tumor necrosis factor-2 allele with plasma tumor necrosis factor-a levels and mortality from septic shock. Am J Med 110:486–488PubMedCrossRefGoogle Scholar
  24. 24.
    Lee YH, Rho YH, Choi SJ et al (2006) Association of TNF-alpha-308 G/A polymorphism with responsiveness to TNF-alpha-blockers in rheumatoid arthritis: a meta-analysis. Rheumatol Int 27:157–161PubMedCrossRefGoogle Scholar
  25. 25.
    Esmon C (2000) The protein C pathway. Crit Care Med 28([Suppl]):S44–S48PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor FB Jr, Stearns-Kurosawa DJ, Kurosawa S et al (2000) The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood 95:1680–1686PubMedGoogle Scholar
  27. 27.
    Bernard GR, Vincent J-L, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709PubMedCrossRefGoogle Scholar
  28. 28.
    Walley KR, Russell JA (2007) Protein C-1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med 35:12–17PubMedCrossRefGoogle Scholar
  29. 29.
    Benfield TL, Dahl M, Nordestgaard BG, Tybjaerg-Hansen A (2005) Influence of the factor V Leiden mutation on infectious disease susceptibility and outcome: a population-based study. J Infect Dis 192:1851–1857PubMedCrossRefGoogle Scholar
  30. 30.
    Jia SH, Li Y, Parodo J et al (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 113:1318–1327PubMedCrossRefGoogle Scholar
  31. 31.
    Revollo JR, Grimm AA, Imai S (2007) The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol 23:164–170PubMedCrossRefGoogle Scholar
  32. 32.
    Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secretedby visceral fat that mimics the effects of insulin. Science 307:426–430PubMedCrossRefGoogle Scholar
  33. 33.
    Ognjanovic S, Bryant-Greenwood GD (2002) Pre-B cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am J Obstet Gynecol 187:1051–1058PubMedCrossRefGoogle Scholar
  34. 34.
    Ye SQ, Simon BA, Maloney JP et al (2005) Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Resp Crit Care Med 171:361–370PubMedCrossRefGoogle Scholar
  35. 35.
    Bajwa EK, Yu CL, Gong MN et al (2007) Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med 35:1290–1295PubMedCrossRefGoogle Scholar
  36. 36.
    Arcaroli J, Silva E, Maloney JP et al (2006) Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis. Am J Respir Crit Care Med 173:1335–1341PubMedCrossRefGoogle Scholar
  37. 37.
    Saleh M, Vaillancourt JP, Graham RK et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79PubMedCrossRefGoogle Scholar
  38. 38.
    Khor CC, Chapman SJ, Vannberg FO et al (2007) A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39:523–528PubMedCrossRefGoogle Scholar
  39. 39.
    Freeman JL, Perry GH, Feuk L et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961PubMedCrossRefGoogle Scholar
  40. 40.
    Watson RS, Carcillo JA, Linde-Zwirble WT et al (2007) The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 167:695–701CrossRefGoogle Scholar
  41. 41.
    Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  42. 42.
    Osrin D, Vergnano S, Costello A (2004) Serious bacterial infections in newborn infants in developing countries. Curr Opin Infect Dis 17:217–224PubMedCrossRefGoogle Scholar
  43. 43.
    Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 41(Suppl 7):S504–S512PubMedCrossRefGoogle Scholar
  44. 44.
    Martin GS, Mannino DM, Moss M (2006) The effect of age on the development and outcome of adult sepsis. Crit Care Med 34:15–21PubMedCrossRefGoogle Scholar
  45. 45.
    Ely EW, Angus DC, Williams MD et al (2003) Drotrecogin alfa (activated) treatment of older patients with severe sepsis. Clin Infect Dis 37:187–195PubMedCrossRefGoogle Scholar
  46. 46.
    Nadel S, Goldstein B, Williams MD et al (2007) Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet 369(9564):836–843PubMedCrossRefGoogle Scholar
  47. 47.
    Turnbull IR, Wlzorek JJ, Osborne D et al (2003) Effects of age on mortality and antibiotic efficacy in cecal ligation and puncture. Shock 19:310–313PubMedCrossRefGoogle Scholar
  48. 48.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  49. 49.
    Crabtree TD, Pelletier SJ, Gleason TG et al (1999) Gender-dependent differences in outcome after the treatment of infection in hospitalized patients. JAMA 282:2143–2148PubMedCrossRefGoogle Scholar
  50. 50.
    Eachempati SR, Hydo L, Barie PS (1999) Gender-based differences in outcome in patients with sepsis. Arch Surg 134:1342–1347PubMedCrossRefGoogle Scholar
  51. 51.
    Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Occurrence and outcomes of sepsis: influence of race. Crit Care Med 35:958–960CrossRefGoogle Scholar
  52. 52.
    Dhainaut JF, Claessens YE, Janes J, Nelson DR (2005) Underlying disorders and their impact on the host response to infection. Clin Infect Dis 41(Suppl 7):S481–S489PubMedCrossRefGoogle Scholar
  53. 53.
    Brun-Buisson C, Doyon F, Carlet J et al (1995) Incidence, risk factors, and outcomes of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. JAMA 274:968–974PubMedCrossRefGoogle Scholar
  54. 54.
    Martini GA, Phear EA, Ruebner B, Sherlock S (1957) The bacterial content of the small intestine in normal and cirrhotic subjects: relation to methionine toxicity. Clin Sci 16:35–51PubMedGoogle Scholar
  55. 55.
    Nisbeth U, Hällgren R, Eriksson O, Danielson BG (1987) Endotoxemia in chronic renal failure. Nephron 45:93–97PubMedCrossRefGoogle Scholar
  56. 56.
    Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842PubMedCrossRefGoogle Scholar
  57. 57.
    Violi F, Ferro D, Basili S et al (1995) Association between low-grade disseminated intravascular coagulation and endotoxemia in patients with liver cirrhosis. Gastroenterology 109:531–539PubMedCrossRefGoogle Scholar
  58. 58.
    Moore EE, Moore FA, Harken AH et al (2005) The two-event construct of postinjury multiple organ failure. Shock 24(Suppl 1):71–74PubMedCrossRefGoogle Scholar
  59. 59.
    Powers KA, Szaszi K, Khadaroo RG et al (2006) Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med 203:1951–1961PubMedCrossRefGoogle Scholar
  60. 60.
    Vincent JL, Sakr Y, Sprung CL et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353PubMedCrossRefGoogle Scholar
  61. 61.
    Lorenz E, Mira JP, Cornish KL et al (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401PubMedCrossRefGoogle Scholar
  62. 62.
    Sutherland AM, Walley KR, Russell JA (2005) Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 33:638–6644PubMedCrossRefGoogle Scholar
  63. 63.
    Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032PubMedCrossRefGoogle Scholar
  64. 64.
    Agnese DM, Calvano JE, Hahm SJ et al (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186:1522–1525PubMedCrossRefGoogle Scholar
  65. 65.
    Van Der Graaf CA, Netea MG, Morré SA et al (2006) Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 17:29–34PubMedGoogle Scholar
  66. 66.
    Hawn TR, Verbon A, Lettinga KD et al (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–1572PubMedCrossRefGoogle Scholar
  67. 67.
    Bochud PY, Hersberger M, Taffé P et al (2007) Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21:441–446PubMedCrossRefGoogle Scholar
  68. 68.
    Gibot S, Cariou A, Drouet L et al (2002) Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 30:969–973PubMedCrossRefGoogle Scholar
  69. 69.
    Gu W, Shan YA, Zhou J et al (2007) Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg 246:151–158PubMedCrossRefGoogle Scholar
  70. 70.
    Brenmoehl J, Herfarth H, Glück T et al (2007) Genetic variants in the NOD2/CARD15 gene are associated with early mortality in sepsis patients. Intensive Care Med 33:1541–1548PubMedCrossRefGoogle Scholar
  71. 71.
    Roy S, Knox K, Segal S et al (2002) MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359:1569–1573PubMedCrossRefGoogle Scholar
  72. 72.
    Garred P, Strøm J, Quist L et al (2003) Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 188:1394–1403PubMedCrossRefGoogle Scholar
  73. 73.
    Gong MN, Zhou W, Williams PL et al (2007) Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med 35:48–56PubMedCrossRefGoogle Scholar
  74. 74.
    Hubacek JA, Stuber F, Fohlich D et al (2001) Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 29:557–561PubMedCrossRefGoogle Scholar
  75. 75.
    Eklund C, Huttunen R, Syrjänen J et al (2006) Polymorphism of the C-reactive protein gene is associated with mortality in bacteraemia. Scand J Infect Dis 38:1069–1073PubMedCrossRefGoogle Scholar
  76. 76.
    Warren BL, Eid A, Singer P et al (2001) High-dose antithrombin III in severe sepsis: a randomized, controlled trial. JAMA 286:1869–1878PubMedCrossRefGoogle Scholar
  77. 77.
    Abraham E, Reinhart K, Opal S et al (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 290:238–247PubMedCrossRefGoogle Scholar
  78. 78.
    Opal S, Laterre PF, Abraham E et al (2004) Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 32:332–341PubMedCrossRefGoogle Scholar
  79. 79.
    Panacek EA, Marshall JC, Albertson TE et al (2004) Efficacy and safety of the monoclonal anti-TNF antibody F(ab’)2 fragment afelimomab in patients with severe sepsis stratified by IL-6 level. Crit Care Med 32:2173–2182PubMedGoogle Scholar
  80. 80.
    Abraham E, Laterre PF, Garg R et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353:1332–1341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • J. C. Marshall
    • 1
  1. 1.Department of Surgery, and the Interdepartmental Division of Critical Care MedicineUniversity of Toronto, Li Ka Shing Knowledge Institute, St. Michael’s HospitalTorontoCanada

Personalised recommendations