Skip to main content
  • 947 Accesses

Abstract

Sepsis is defined as the host response to invasive infection [1]. But while the trigger — infection — typically originates outside the host, the response that drives the phenotype of the illness arises endogenously. As a consequence, it is highly, and perhaps counterintuitively, shaped by pre-existing factors within the host that predispose him or her to a distinctive risk of acquiring infection, and having acquired that infection, of surviving the acute illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC, Balk RA, Cerra FB et al (1992) ACCP/SCCM CONSENSUS CONFERENCE. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  2. Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538

    PubMed  Google Scholar 

  3. Sorenson TI, Nielsen GG, Andersen PK, Teasdale PW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732

    Article  Google Scholar 

  4. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    Article  PubMed  CAS  Google Scholar 

  5. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  CAS  Google Scholar 

  6. Lazarus R, Vercelli D, Palmer LJ et al (2002) Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev 190:9–25

    Article  PubMed  CAS  Google Scholar 

  7. Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124:1103–1115

    Article  PubMed  CAS  Google Scholar 

  8. Arcaroli J, Fessier MB, Abraham E (2005) Genetic polymorphisms and sepsis. Shock 24:300–312

    Article  PubMed  CAS  Google Scholar 

  9. Clark MF, Baudoin SV (2006) A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32:1706–1712

    Article  PubMed  Google Scholar 

  10. Dahmer MK, Randolph A, Vitali S, Quasney MW (2005) Genetic polymorphisms in sepsis. Pediatr Crit Care Med 6(3 Suppl):S61–S73

    Article  PubMed  Google Scholar 

  11. Imahara SD, O’Keefe GE (2007) Genetic determinants of the inflammatory response. Curr Opin Crit Care 10:318–324

    Article  Google Scholar 

  12. Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32:569–579

    Article  PubMed  CAS  Google Scholar 

  13. van Deventer SJ, Biiller HR, Ten Cate JW et al (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76:2520–2526

    PubMed  Google Scholar 

  14. Tracey KJ, Fong Y, Hesse DG et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664

    Article  PubMed  CAS  Google Scholar 

  15. Hinshaw LB, Tekamp-Olson P, Chang AC et al (1990) Survival of primates in LD100 septic shock following therapy with antibody to tumor necrosis factor (TNF alpha). Circ Shock 30:279–292

    PubMed  CAS  Google Scholar 

  16. Panacek EA, Marshall JC, Albertson TE et al (2004) Efficacy and safety of the monoclonal anti-TNF antibody F(ab’)2 fragment afelimomab in patients with severe sepsis stratified by IL-6 level. Crit Care Med 32:2173–2182

    PubMed  CAS  Google Scholar 

  17. Marshall JC (2003) Such stuff as dreams are made on: Mediator-targeted therapy in sepsis. Nature Rev Drug Disc 2:391–405

    Article  CAS  Google Scholar 

  18. Lipsky PE, van der Heijde DM, St Clair EW et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 343:1594–1602

    Article  PubMed  CAS  Google Scholar 

  19. Rutgeerts P, Van Assche G, Vermeire S (2004) Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology 126:1593–1610

    Article  PubMed  CAS  Google Scholar 

  20. Wilson AG, de Vries N, Pociot F et al (1993) An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med 177:557–560

    Article  PubMed  CAS  Google Scholar 

  21. Wilson AG, Symons JA, McDowell TL et al (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199

    Article  PubMed  CAS  Google Scholar 

  22. Mira JP, Cariou A, Grall F et al (1999) Association of TNF2, a TNF-a promoter polymorphism, with septic shock susceptibility and mortality. JAMA 282:561–568

    Article  PubMed  CAS  Google Scholar 

  23. Appoloni O, Dupont E, Vandercruys M et al (2001) Association of tumor necrosis factor-2 allele with plasma tumor necrosis factor-a levels and mortality from septic shock. Am J Med 110:486–488

    Article  PubMed  CAS  Google Scholar 

  24. Lee YH, Rho YH, Choi SJ et al (2006) Association of TNF-alpha-308 G/A polymorphism with responsiveness to TNF-alpha-blockers in rheumatoid arthritis: a meta-analysis. Rheumatol Int 27:157–161

    Article  PubMed  CAS  Google Scholar 

  25. Esmon C (2000) The protein C pathway. Crit Care Med 28([Suppl]):S44–S48

    Article  PubMed  CAS  Google Scholar 

  26. Taylor FB Jr, Stearns-Kurosawa DJ, Kurosawa S et al (2000) The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood 95:1680–1686

    PubMed  CAS  Google Scholar 

  27. Bernard GR, Vincent J-L, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  28. Walley KR, Russell JA (2007) Protein C-1641 AA is associated with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med 35:12–17

    Article  PubMed  CAS  Google Scholar 

  29. Benfield TL, Dahl M, Nordestgaard BG, Tybjaerg-Hansen A (2005) Influence of the factor V Leiden mutation on infectious disease susceptibility and outcome: a population-based study. J Infect Dis 192:1851–1857

    Article  PubMed  CAS  Google Scholar 

  30. Jia SH, Li Y, Parodo J et al (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 113:1318–1327

    Article  PubMed  CAS  Google Scholar 

  31. Revollo JR, Grimm AA, Imai S (2007) The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol 23:164–170

    Article  PubMed  CAS  Google Scholar 

  32. Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secretedby visceral fat that mimics the effects of insulin. Science 307:426–430

    Article  PubMed  CAS  Google Scholar 

  33. Ognjanovic S, Bryant-Greenwood GD (2002) Pre-B cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am J Obstet Gynecol 187:1051–1058

    Article  PubMed  CAS  Google Scholar 

  34. Ye SQ, Simon BA, Maloney JP et al (2005) Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Resp Crit Care Med 171:361–370

    Article  PubMed  Google Scholar 

  35. Bajwa EK, Yu CL, Gong MN et al (2007) Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med 35:1290–1295

    Article  PubMed  CAS  Google Scholar 

  36. Arcaroli J, Silva E, Maloney JP et al (2006) Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis. Am J Respir Crit Care Med 173:1335–1341

    Article  PubMed  CAS  Google Scholar 

  37. Saleh M, Vaillancourt JP, Graham RK et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79

    Article  PubMed  CAS  Google Scholar 

  38. Khor CC, Chapman SJ, Vannberg FO et al (2007) A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39:523–528

    Article  PubMed  CAS  Google Scholar 

  39. Freeman JL, Perry GH, Feuk L et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Article  PubMed  CAS  Google Scholar 

  40. Watson RS, Carcillo JA, Linde-Zwirble WT et al (2007) The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 167:695–701

    Article  Google Scholar 

  41. Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  PubMed  CAS  Google Scholar 

  42. Osrin D, Vergnano S, Costello A (2004) Serious bacterial infections in newborn infants in developing countries. Curr Opin Infect Dis 17:217–224

    Article  PubMed  Google Scholar 

  43. Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 41(Suppl 7):S504–S512

    Article  PubMed  CAS  Google Scholar 

  44. Martin GS, Mannino DM, Moss M (2006) The effect of age on the development and outcome of adult sepsis. Crit Care Med 34:15–21

    Article  PubMed  Google Scholar 

  45. Ely EW, Angus DC, Williams MD et al (2003) Drotrecogin alfa (activated) treatment of older patients with severe sepsis. Clin Infect Dis 37:187–195

    Article  PubMed  CAS  Google Scholar 

  46. Nadel S, Goldstein B, Williams MD et al (2007) Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet 369(9564):836–843

    Article  PubMed  CAS  Google Scholar 

  47. Turnbull IR, Wlzorek JJ, Osborne D et al (2003) Effects of age on mortality and antibiotic efficacy in cecal ligation and puncture. Shock 19:310–313

    Article  PubMed  Google Scholar 

  48. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  49. Crabtree TD, Pelletier SJ, Gleason TG et al (1999) Gender-dependent differences in outcome after the treatment of infection in hospitalized patients. JAMA 282:2143–2148

    Article  PubMed  CAS  Google Scholar 

  50. Eachempati SR, Hydo L, Barie PS (1999) Gender-based differences in outcome in patients with sepsis. Arch Surg 134:1342–1347

    Article  PubMed  CAS  Google Scholar 

  51. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Occurrence and outcomes of sepsis: influence of race. Crit Care Med 35:958–960

    Article  Google Scholar 

  52. Dhainaut JF, Claessens YE, Janes J, Nelson DR (2005) Underlying disorders and their impact on the host response to infection. Clin Infect Dis 41(Suppl 7):S481–S489

    Article  PubMed  Google Scholar 

  53. Brun-Buisson C, Doyon F, Carlet J et al (1995) Incidence, risk factors, and outcomes of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. JAMA 274:968–974

    Article  PubMed  CAS  Google Scholar 

  54. Martini GA, Phear EA, Ruebner B, Sherlock S (1957) The bacterial content of the small intestine in normal and cirrhotic subjects: relation to methionine toxicity. Clin Sci 16:35–51

    PubMed  CAS  Google Scholar 

  55. Nisbeth U, Hällgren R, Eriksson O, Danielson BG (1987) Endotoxemia in chronic renal failure. Nephron 45:93–97

    Article  PubMed  CAS  Google Scholar 

  56. Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842

    Article  PubMed  CAS  Google Scholar 

  57. Violi F, Ferro D, Basili S et al (1995) Association between low-grade disseminated intravascular coagulation and endotoxemia in patients with liver cirrhosis. Gastroenterology 109:531–539

    Article  PubMed  CAS  Google Scholar 

  58. Moore EE, Moore FA, Harken AH et al (2005) The two-event construct of postinjury multiple organ failure. Shock 24(Suppl 1):71–74

    Article  PubMed  Google Scholar 

  59. Powers KA, Szaszi K, Khadaroo RG et al (2006) Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med 203:1951–1961

    Article  PubMed  CAS  Google Scholar 

  60. Vincent JL, Sakr Y, Sprung CL et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353

    Article  PubMed  Google Scholar 

  61. Lorenz E, Mira JP, Cornish KL et al (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401

    Article  PubMed  CAS  Google Scholar 

  62. Sutherland AM, Walley KR, Russell JA (2005) Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 33:638–6644

    Article  PubMed  CAS  Google Scholar 

  63. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032

    Article  PubMed  CAS  Google Scholar 

  64. Agnese DM, Calvano JE, Hahm SJ et al (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186:1522–1525

    Article  PubMed  CAS  Google Scholar 

  65. Van Der Graaf CA, Netea MG, Morré SA et al (2006) Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 17:29–34

    PubMed  Google Scholar 

  66. Hawn TR, Verbon A, Lettinga KD et al (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–1572

    Article  PubMed  CAS  Google Scholar 

  67. Bochud PY, Hersberger M, Taffé P et al (2007) Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21:441–446

    Article  PubMed  CAS  Google Scholar 

  68. Gibot S, Cariou A, Drouet L et al (2002) Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 30:969–973

    Article  PubMed  CAS  Google Scholar 

  69. Gu W, Shan YA, Zhou J et al (2007) Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg 246:151–158

    Article  PubMed  Google Scholar 

  70. Brenmoehl J, Herfarth H, Glück T et al (2007) Genetic variants in the NOD2/CARD15 gene are associated with early mortality in sepsis patients. Intensive Care Med 33:1541–1548

    Article  PubMed  CAS  Google Scholar 

  71. Roy S, Knox K, Segal S et al (2002) MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359:1569–1573

    Article  PubMed  CAS  Google Scholar 

  72. Garred P, Strøm J, Quist L et al (2003) Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 188:1394–1403

    Article  PubMed  CAS  Google Scholar 

  73. Gong MN, Zhou W, Williams PL et al (2007) Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med 35:48–56

    Article  PubMed  CAS  Google Scholar 

  74. Hubacek JA, Stuber F, Fohlich D et al (2001) Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 29:557–561

    Article  PubMed  CAS  Google Scholar 

  75. Eklund C, Huttunen R, Syrjänen J et al (2006) Polymorphism of the C-reactive protein gene is associated with mortality in bacteraemia. Scand J Infect Dis 38:1069–1073

    Article  PubMed  CAS  Google Scholar 

  76. Warren BL, Eid A, Singer P et al (2001) High-dose antithrombin III in severe sepsis: a randomized, controlled trial. JAMA 286:1869–1878

    Article  PubMed  CAS  Google Scholar 

  77. Abraham E, Reinhart K, Opal S et al (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 290:238–247

    Article  PubMed  CAS  Google Scholar 

  78. Opal S, Laterre PF, Abraham E et al (2004) Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 32:332–341

    Article  PubMed  CAS  Google Scholar 

  79. Panacek EA, Marshall JC, Albertson TE et al (2004) Efficacy and safety of the monoclonal anti-TNF antibody F(ab’)2 fragment afelimomab in patients with severe sepsis stratified by IL-6 level. Crit Care Med 32:2173–2182

    PubMed  CAS  Google Scholar 

  80. Abraham E, Laterre PF, Garg R et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353:1332–1341

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Italia

About this paper

Cite this paper

Marshall, J.C. (2008). Predisposition to Sepsis. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-0773-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0773-4_22

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0772-7

  • Online ISBN: 978-88-470-0773-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics