New Aspects of Basic Cardiopulmonary Resuscitation Research: From Clinically Relevant Animal Models to Cells

  • G. Ristagno
  • T. Wang
  • W. Tang
Conference paper


Cardiac arrest is a dramatic event that can occur suddenly and often without premonitory signs. This condition is characterized by sudden loss of consciousness due to the lack of cerebral blood flow, which occurs when the heart ceases to pump. This phenomenon is potentially reversible if cardiopulmonary resuscitation (CPR) procedures are started early, but it becomes irreversible without interventions or delayed initiation of CPR [1].


Mesenchymal Stem Cell Cardiac Arrest Phosphate Buffer Solution Left Anterior Descend Cardiopulmonary Resuscitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gullo A (2002) Cardiac arrest, chain of survival and Utstein style. Eur J Anaesthesiol 19:624–633PubMedCrossRefGoogle Scholar
  2. 2.
    International Liaison Committee on Resuscitation (2005) Part 2: Adult basic life support. Resuscitation 67:187–201CrossRefGoogle Scholar
  3. 3.
    Sanders AB, Ewy GA (2005) Cardiopulmonary resuscitation in real world: when will the guidelines get the message? JAMA 293:363–365PubMedCrossRefGoogle Scholar
  4. 4.
    Nichol G, Stiell IG, Laupacis A et al (1999) A cumulative meta-analysis of the effectiveness of defibrillator-capable emergency medical services for victims of out-of-hospital cardiac arrest. Ann Emerg Med 34:517–525PubMedCrossRefGoogle Scholar
  5. 5.
    Engdahl J, Bang A, Lindqvist J et al (2003) Time trends in long-term mortality after out-of-hospital cardiac arrest, 1980 to 1998, and predictors for death. Am Heart J 145:749–750CrossRefGoogle Scholar
  6. 6.
    Eisenberg MS, Horwood BT, Cummins RO et al (1990) Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 19:179–186PubMedCrossRefGoogle Scholar
  7. 7.
    Becker LB, Ostrander MP, Barrett J et al (1991) Outcome of cardiopulmonary resuscitation in a large metropolitan area: where are the survivors? Ann Emerg Med 20:355–361PubMedCrossRefGoogle Scholar
  8. 8.
    Caffrey SL, Willoughby PJ, Pepe PE et al (2002) Public use of automated external defibrillators. N Engl J Med 347:1242–1247PubMedCrossRefGoogle Scholar
  9. 9.
    Podrid PJ, Myerburg RJ (2005) Epidemiology and stratification of risk for sudden cardiac death. Clin Cardiol 28(11 Suppl 1):I 3–I 11Google Scholar
  10. 10.
    Reichenbach DD, Moss NS, Meyer E (1997) Pathology of the heart in sudden cardiac death. Am J Cardiol 39:865–872CrossRefGoogle Scholar
  11. 11.
    Hughes GC, Post MJ, Simons M et al (2003) Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J Appl Physiol 94:1689–1701PubMedGoogle Scholar
  12. 12.
    Ouyang P, Brinker JA, Bulkley BH et al (1981) Ischemic ventricular fibrillation: the importance of being spontaneous. Am J Cardiol 48:455–459PubMedCrossRefGoogle Scholar
  13. 13.
    Qin H, Walcott GP, Killingsworth CR et al (2002) Impact of myocardial ischemia and reperfusion on ventricular defibrillation patterns, energy requirements, and detection of recovery. Circulation 105:2537–2542PubMedCrossRefGoogle Scholar
  14. 14.
    Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemie bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644PubMedGoogle Scholar
  15. 15.
    Gheeraert PJ, Henriques JP, De Buyzere ML et al (2000) Out-of-hospital ventricular fibrillation in patients with acute myocardial infarction: coronary angiographie determinants. J Am Coll Cardiol 35:144–150PubMedCrossRefGoogle Scholar
  16. 16.
    Fang X, Tang W, Sun S et al (2006) Cardiopulmonary Resuscitation in a Rat Model of Chronic Myocardial Ischemia. J Appl Physiol 101:1091–1096PubMedCrossRefGoogle Scholar
  17. 17.
    Fang X, Tang W, Sun S et al (2006) Outcomes of CPR in a Rat Model of Chronic Ischemic Heart Failure. Circulation 114(18 Suppl):II AbstractGoogle Scholar
  18. 18.
    Hearse DJ (2000) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 45:213–219PubMedCrossRefGoogle Scholar
  19. 19.
    Maxwell MP, Hearse DJ, Yellon DM (1987) Is there a component of coronary collateral flow which cannot be detected by radiolabelled microspheres? Cardiovasc Res 21:747–754PubMedGoogle Scholar
  20. 20.
    Schaper W, Jageneau A, Xhonneux R (1967) The development of collateral circulation in the pig and dog heart. Cardiologia 51:321–335PubMedGoogle Scholar
  21. 21.
    Swindle MM, Horneffer PJ, Gardner TJ et al (1986) Anatomic and anesthetic considerations in experimental and cardiopulmonary surgery in swine. Lab Anim Sci 36:357–361PubMedGoogle Scholar
  22. 22.
    Sato K, Laham RJ, Pearlman JD et al (2000) Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 70:2113–2118PubMedCrossRefGoogle Scholar
  23. 23.
    Fuchs S, Baffour R, Zhou YF et al (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37:1726–1732PubMedCrossRefGoogle Scholar
  24. 24.
    Anastasiou-Nana MI, Tsagalou EP, Charitos C et al (2005) Effects of transient myocardial ischemia on the ventricular defibrillation threshold. Pacing Clin Electrophysiol 28:97–101PubMedCrossRefGoogle Scholar
  25. 25.
    Janse MJ, Kleber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49:1069–1081PubMedGoogle Scholar
  26. 26.
    Spach MS, Josephson ME (1994) Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol 5:182–209PubMedCrossRefGoogle Scholar
  27. 27.
    Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049–1169PubMedGoogle Scholar
  28. 28.
    Durrer D, van Dam RT, Freud GE et al (1971) Re-entry and ventricular arrhythmias in local ischemia and infarction of the intact dog heart. Proc K Ned Akad Wet C 74:321–334PubMedGoogle Scholar
  29. 29.
    Scherlag BJ, el-Sherif N, Hope R et al (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35:372–383PubMedGoogle Scholar
  30. 30.
    Janse MJ, van Capelle FJ, Morsink H et al (1980) Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res 47:151–165PubMedGoogle Scholar
  31. 31.
    Niemann JT, Rosborough JP, Walker RG (2004) A model of ischemically induced ventricular fibrillation for comparison of fixed-dose and escalating-dose defibrillation strategies. Acad Emerg Med 11:619–624PubMedGoogle Scholar
  32. 32.
    Daher E, Dione DP, Heller EN et al (2000) Acute ischemic dysfunction alters coronary flow reserve in remote nonischemic regions: potential mechanical etiology identified in an acute canine model. J Nucl Cardiol 7:112–122PubMedCrossRefGoogle Scholar
  33. 33.
    Yoon SB, Lee SH, Choi S et al (2006) Transient global left ventricular dysfunction in a localized myocardial infarction related to occlusion of the distal left anterior descending artery. Clin Cardiol 29:418–420PubMedCrossRefGoogle Scholar
  34. 34.
    Wang J, Weil MH, Tang W et al (2006) A comparison of electrically induced cardiac arrest with cardiac arrest produced by coronary occlusion. Resuscitation 72:477–483PubMedCrossRefGoogle Scholar
  35. 35.
    Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edge sword? J Clin Invest 76:1713–1719PubMedCrossRefGoogle Scholar
  36. 36.
    Fava M, Loyola S, Bertoni H et al (2005) Massive pulmonary embolism: percutaneous mechanical thrombectomy during cardiopulmonary resuscitation. J Vasc Interv Radiol 16:119–123PubMedGoogle Scholar
  37. 37.
    Ruiz-Bailen M, Aguayo-de-Hoyos E, Serrano-Corcoles MC et al (2001) Thrombolysis with recombinant tissue plasminogen activator during cardiopulmonary resuscitation in fulminant pulmonary embolism. A case series. Resuscitation 51:97–101Google Scholar
  38. 38.
    Sporh F, Bottiger BW (2005) Thrombolytics in CPR. Current advantages in cardiopulmonary resuscitation. Minerva Anestesiol 71:291–296Google Scholar
  39. 39.
    Ristagno G, Tang W, Xu T et al (2007) Outcomes of CPR in the presence of partial occlusion of left anterior descending coronary artery. Resuscitation Jul 16 [Epub ahead of print]Google Scholar
  40. 40.
    Peatfield RC, Sillett RW, Taylor D et al (1997) Survival after cardiac arrest in the hospital. Lancet 1:1223–1225Google Scholar
  41. 41.
    DeBard ML (1981) Cardiopulmonary resuscitation: analysis of six years experience and review of the literature. Ann Emerg Med 10:408–416PubMedCrossRefGoogle Scholar
  42. 42.
    Schenenberger RA, von Planta M, von Planta I (1994) Survival after failed out of hospital resuscitation. Are further therapeutic efforts in the emergency department futile? Arch Intern Med 154:2433–2437CrossRefGoogle Scholar
  43. 43.
    Tang W, Weil MH, Sun S et al (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050PubMedCrossRefGoogle Scholar
  44. 44.
    Tang W, Weil MH, Sun S et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093PubMedGoogle Scholar
  45. 45.
    Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688PubMedGoogle Scholar
  46. 46.
    Jones JL, Proskauer CC, Paul WK et al (1980) Ultrastructural injury to chick myocardial cells in vitro following ‘electric countershock’ Circ Res 46:387–394PubMedGoogle Scholar
  47. 47.
    Caterine MR, Spencer KT, Smith RS et al (1994) Direct current countershocks generate free radicals. Circulation 90(Suppl 1):1–5. AbstractGoogle Scholar
  48. 48.
    Gaba DM, Maxwell MS, Merlone S et al (1987) Internal countershock produces myocardial damage and lactate production without myocardial ischemia in anesthetized dogs. Anesthesiology 66:477–482PubMedCrossRefGoogle Scholar
  49. 49.
    Kato S, Takemura G, Maruyama R (2001) Apoptosis, rather than oncosis, is the predominant mode of spontaneous death of isolated adult rat cardiac myocytes in culture. Jpn Circ J 65:743–748PubMedCrossRefGoogle Scholar
  50. 50.
    Kubin T, Ando H, Scholz D et al (1999) Microvascular endothelial cells remodel cultured adult cardiomyocytes and increase their survival. Am J Physiol 276:H2179–H2187PubMedGoogle Scholar
  51. 51.
    Ristagno G, Wang T, Tsai M et al (2007) High energy defibrillation impairs contractility and intracellular calcium dynamics. Circulation; in press. AbstractGoogle Scholar
  52. 52.
    Ren J, Loren EW (2002) Measurement of cardiac mechanical function in isolated ventricular myocytes from rats and mice by computerized video-based imaging. Biol Proced Online 3:43–53CrossRefGoogle Scholar
  53. 53.
    Takemura G, Fujiwara H (2004) Role of apoptosis in remodeling after myocardial infarction. Pharmacol Ther 104:1–16PubMedCrossRefGoogle Scholar
  54. 54.
    Kunapuli S, Rosanio S, Schwarz ER (2006) “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 12:381–391PubMedCrossRefGoogle Scholar
  55. 55.
    Nepomnyashchikh LM, Semenov DE (2000) Apoptosis of cardiomyocytes as extreme manifestation of regeneration and plastic insufficiency of myocardium. Bull Exp Biol Med 130:903–907PubMedGoogle Scholar
  56. 56.
    Mollmann H, Nef HM, Kostin S et al (2006) Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc Res 71:661–671PubMedCrossRefGoogle Scholar
  57. 57.
    Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757PubMedCrossRefGoogle Scholar
  58. 58.
    Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5:32–45PubMedCrossRefGoogle Scholar
  59. 59.
    Minguell JJ, Erices A (2006) Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med 231:39–49Google Scholar
  60. 60.
    Haider HKh, Ashraf M (2005) Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 288:H2557–H2567PubMedCrossRefGoogle Scholar
  61. 61.
    Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520Google Scholar
  62. 62.
    Jain M, Pfister O, Roger J et al (2005) Mesenchymal stem cells in the infarcted heart. Coronary Art Dis 16:93–97CrossRefGoogle Scholar
  63. 63.
    Dai W, Hale SL, Martin BJ et al (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short-and long-term effects. Circulation 112:214–223PubMedCrossRefGoogle Scholar
  64. 64.
    Price MJ, Chou CC, Frantzen M et al (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111:231–239PubMedCrossRefGoogle Scholar
  65. 65.
    Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 364:141–148PubMedCrossRefGoogle Scholar
  66. 66.
    Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95PubMedCrossRefGoogle Scholar
  67. 67.
    Wang T, Tang W, Sun S et al (2006) Improved function of infarcted myocardium following intravenous infusion of bone marrow mesenchymal stem cells. Crit Care Med 34:115 AbstractGoogle Scholar
  68. 68.
    Saito T, Kuang JQ, Bittira B et al (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74:19–24PubMedCrossRefGoogle Scholar
  69. 69.
    Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci 102:11474–11479PubMedCrossRefGoogle Scholar
  70. 70.
    Fukuda K, Yuasa S (2006) Stem cells as a source of regenerative cardiomyocytes. Circ Res 98:1002–1013PubMedCrossRefGoogle Scholar
  71. 71.
    Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20PubMedCrossRefGoogle Scholar
  72. 72.
    Nagaya N, Kangawa K, Itoh T et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135PubMedCrossRefGoogle Scholar
  73. 73.
    Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodelling and improves cardiac function. Nat Med 7:430–436PubMedCrossRefGoogle Scholar
  74. 74.
    Crisostomo PR, Wang M, Wairiuko GM et al (2006) High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 26:575–580PubMedCrossRefGoogle Scholar
  75. 75.
    Wang M, Tsai BM, Crisostomo PR et al (2006) Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 25:454–459PubMedCrossRefGoogle Scholar
  76. 76.
    Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20PubMedCrossRefGoogle Scholar
  77. 77.
    Miyagawa S, Sawa Y, Taketani S et al (2002) Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 105:2556–2561PubMedCrossRefGoogle Scholar
  78. 78.
    Sam J, Angoulvant D, Fazel S et al (2005) Heart cell implantation after myocardial infarction. Coron Artery Dis 16:85–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • G. Ristagno
    • 1
    • 2
  • T. Wang
    • 1
  • W. Tang
    • 1
    • 3
  1. 1.Weil Institute of Critical Care MedicineRancho MirageUSA
  2. 2.Department of Perioperative Medicine, Intensive Care and EmergencyTrieste University Medical SchoolTriesteItaly
  3. 3.Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations