Ventilator-Associated Lung Injury

  • E. Crimi
  • L. Del Sorbo
  • V. M. Ranieri


Since its introduction into clinical practice as life-sustaining therapy in the polio epidemic, mechanical ventilation has proved to be an important tool for the treatment of the respiratory failure. One of the main reasons for a patient’s admission into the intensive care unit (ICU) is to receive ventilator support [1]. According to a recent review by Esteban and co-workers [2], 66% of patients who require mechanical ventilation suffer from acute respiratory failure, including acute respiratory distress syndrome (ARDS), heart failure, pneumonia, sepsis, complications of surgery and trauma. The remaining indications include coma (15%), acute exacerbation of chronic obstructive pulmonary disease (13%) and neuromuscular disorders (5%). The aims of mechanical ventilation are primarily to decrease the work of breathing and to reverse life-threatening hypoxaemia or acute progressive respiratory acidosis. However, over the last two decades, research in a number of animal models has shown that mechanical ventilation itself can produce acute lung injury (ALI) [3]. The classical form of iatrogenic lung injury, recognised clinically for many decades, is the well-known barotrauma, defined as radiological evidence of extra-alveolar air [4]. The extraalveolar accumulation of air has several manifestations, of which the most threatening is tension pneumothorax.


Mechanical Ventilation Lung Injury Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tobin MJ (2001) Advances in mechanical ventilation. N Engl J Med 344(26): 1986–1996PubMedCrossRefGoogle Scholar
  2. 2.
    Esteban A, Anzueto A, Alía I et al (2000) How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 161(5):1450–1458PubMedGoogle Scholar
  3. 3.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1):294–323PubMedGoogle Scholar
  4. 4.
    Macklin MT, Macklin CC (1944) Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine 23:281–358CrossRefGoogle Scholar
  5. 5.
    Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5): 1159–1164Google Scholar
  6. 6.
    Robertson B, Van Golde LMG, Batenburg JJ (eds) (1984) Pulmonary surfactant: from molecular biology to clinical practice. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Anonymous (1999) International Consensus Conferences in Intensive Care Medicine. Ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 160:2118–2124Google Scholar
  8. 8.
    Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110(6):482–488PubMedGoogle Scholar
  9. 9.
    Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116(1 Suppl):9S–15SPubMedGoogle Scholar
  10. 10.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157(6 Pt 1): 1721–1725PubMedGoogle Scholar
  11. 11.
    Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132(3):485–489PubMedGoogle Scholar
  12. 12.
    Ranieri VM, Zhang H (1999) Respiratory mechanics in acute respiratory distress. Curr Opin Crit Care 5:17–20CrossRefGoogle Scholar
  13. 13.
    Whitehead T, Slutsky AS (2002) The pulmonary physician in critical care. 7: Ventilator induced lung injury. Thorax 57:635–642PubMedCrossRefGoogle Scholar
  14. 14.
    Bouhuys A (1969) Physiology and musical instruments. Nature 221:1199–1204PubMedCrossRefGoogle Scholar
  15. 15.
    Anonymous (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Eng1 J Med 342(18):1301–1308CrossRefGoogle Scholar
  16. 16.
    Weg JG, Anzueto A, Balk RA et al (1998) The relation of pneumothorax and other air leaks to mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):341–346PubMedCrossRefGoogle Scholar
  17. 17.
    Stewart TE, Meade MO, Cook DJ et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressureand Volume-Limited Ventilation Strategy Group. N Engl J Med 338(6):355–361PubMedCrossRefGoogle Scholar
  18. 18.
    Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158(6):1831–1838PubMedGoogle Scholar
  19. 19.
    Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66(5):2364–2368PubMedGoogle Scholar
  20. 20.
    Carlton DP, Cummings JJ, Scheerer RG et al (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69(2):577–583PubMedGoogle Scholar
  21. 21.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5): 1327–1334PubMedGoogle Scholar
  22. 22.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28(5):596–608PubMedGoogle Scholar
  23. 23.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110(5):556–565PubMedGoogle Scholar
  24. 24.
    Argiras EP, Blakeley CR, Dunnill MS et al (1987) High PEEP decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59(10): 1278–1285PubMedCrossRefGoogle Scholar
  25. 25.
    Sandhar BK, Niblett DJ, Argiras EP et al (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14(5):538–546PubMedCrossRefGoogle Scholar
  26. 26.
    Chabot F, Mitchell JA, Gutteridge JM, Evans TW (1998) Reactive oxygen species in acute lung injury. Eur Respir J 11(3):745–757PubMedGoogle Scholar
  27. 27.
    Davis WB, Rennard SI, Bitterman PB, Crystal RG (1983) Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hyperoxia. N Engl J Med 309(15):878–883PubMedCrossRefGoogle Scholar
  28. 28.
    Nash G, Bowen JA, Langlinais PC (1971) ‘Respirator lung’: a misnomer. Arch Pathol 91(3):234–240PubMedGoogle Scholar
  29. 29.
    Gattinoni L, Pesenti A, Avalli L et al (1987) pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136(3):730–736PubMedGoogle Scholar
  30. 30.
    Gammon RB, Shin MS, Buchalter SE (1992) Pulmonary barotrauma in mechanical ventilation. Patterns and risk factors. Chest 102(2):568–572PubMedCrossRefGoogle Scholar
  31. 31.
    Kolobow T, Moretti MP, Fumagalli R et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 135(2):312–315Google Scholar
  32. 32.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132(4):880–884PubMedGoogle Scholar
  33. 33.
    Lecuona E, Saldias F, Cornelias A et al (1999) Ventilator-associated lung injury decreases lung ability to clear edema in rats. Am J Respir Crit Care Med 159(2):603–609PubMedGoogle Scholar
  34. 34.
    Albert RK, Lakshminarayan S, Kirk W, Butler J (1980) Lung inflation can cause pulmonary edema in zone I of in situ dog lungs. J Appl Physiol 49(5):815–819PubMedGoogle Scholar
  35. 35.
    Verbrugge SJ, Böhm SH, Gommers D et al (1998) Surfactant impairment after mechanical ventilation with large alveolar surface area changes and effects of positive end-expiratory pressure. Br J Anaesth 80(3):360–364PubMedGoogle Scholar
  36. 36.
    Verbrugge SJ, de Jong JW, Keijzer E et al (1999) Purine in bronchoalveolar lavage fluid as a marker of ventilation-induced lung injury. Crit Care Med 27(4):779–783PubMedCrossRefGoogle Scholar
  37. 37.
    Mathieu-Costello OA, West JB (1994) Are pulmonary capillaries susceptible to mechanical stress? Chest 105:102S–107SPubMedGoogle Scholar
  38. 38.
    Fu Z, Costello ML, Tsukimoto K et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133PubMedGoogle Scholar
  39. 39.
    West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70(4): 1731–1742PubMedGoogle Scholar
  40. 41.
    Gaver DP, Samsel RW, Solway J (1990) Effects of surface tension and viscosity on airway reopening. J Appl Physiol 69(1):74–85PubMedGoogle Scholar
  41. 42.
    Vanderzwan J, McCaig L, Mehta et al (1998) Characterizing alterations in the pulmonary surfactant system in a rat model of Pseudomonas aeruginosa pneumonia. Eur Respir J 12(6): 1388–1396PubMedCrossRefGoogle Scholar
  42. 43.
    Lewis JF, Jobe AH (1993) Surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis 147(1):218–233PubMedGoogle Scholar
  43. 44.
    Malloy J, Veldhuizen R, Yao LJ et al (1997) Alterations of the endogenous surfactant system in septic adult rats. Am J Respir Crit Care Med 156(2 Pt l):617–623PubMedGoogle Scholar
  44. 46.
    Wright JR (1997) Immunomodulatory functions of surfactant. Physiol Rev 77(4):931–962PubMedGoogle Scholar
  45. 47.
    West JB, Mathieu-Costello O (1998) Stress-induced injury of pulmonary capillaries. Proc Assoc Am Physicians 110(6):506–512PubMedGoogle Scholar
  46. 48.
    Kawano T, Mori S, Cybulsky M et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62(1):27–33PubMedGoogle Scholar
  47. 49.
    Tsuno K, Miura K, Takeya M et al (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143(5 Ptl):1115–1120PubMedGoogle Scholar
  48. 50.
    Tremblay L, Valenza F, Ribeiro SP et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99(5):944–952PubMedCrossRefGoogle Scholar
  49. 51.
    von Bethmann AN, Brasch F, Nusing R et al (1998) Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 157(1):263–272Google Scholar
  50. 52.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160(1): 109–116PubMedGoogle Scholar
  51. 54.
    Narimanbekov IO, Rozycki HJ (1995) Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res 21(2):239–254PubMedCrossRefGoogle Scholar
  52. 55.
    Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89(4): 1645–1655PubMedGoogle Scholar
  53. 56.
    Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277(1 Pt 1):L167–L173PubMedGoogle Scholar
  54. 57.
    Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282(1):54–61PubMedCrossRefGoogle Scholar
  55. 58.
    Nahum A, Hoyt J, Schmitz L et al (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25(10):1733–1743PubMedCrossRefGoogle Scholar
  56. 59.
    Verbrugge SJ, Sorm V, van’ t Veen A et al (1998) Lung overinflation without positive endexpiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation. Intensive Care Med 24(2): 172–177PubMedCrossRefGoogle Scholar
  57. 60.
    Murphy DB, Cregg N, Tremblay L et al (2000) Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162(1):27–33PubMedGoogle Scholar
  58. 61.
    Brower RG, Shanholtz CB, Fessier HE et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27(8): 1492–1498PubMedCrossRefGoogle Scholar
  59. 62.
    Slutsky AS, Ranieri VM (2000) Mechanical ventilation: lessons from the ARDSNet trial. Respir Res l(2):73–77CrossRefGoogle Scholar
  60. 63.
    Tobin MJ (2000) Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 342(18):1360–1361PubMedCrossRefGoogle Scholar
  61. 64.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16(6):372–377PubMedCrossRefGoogle Scholar
  62. 65.
    Shibata K, Cregg N, Engelberts D et al (1998) Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med 158(5Pt 1):1578–1584PubMedGoogle Scholar
  63. 67.
    Laffey JG, Tanaka M, Engelberts D et al (2000) Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med 162(6):2287–2294PubMedGoogle Scholar
  64. 68.
    Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150(6 Pt 1):1722–1737PubMedGoogle Scholar
  65. 69.
    de Durante G, del Turco M, Rustichini L et al (2002) ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165(9):1271–1274PubMedCrossRefGoogle Scholar
  66. 70.
    Amato MB, Barbas CS, Medeiros DM et al (1995) Beneficial effects of the ‘open lung approach’ with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152(6 Pt1):1835–1846PubMedGoogle Scholar
  67. 71.
    Hudson LD (1998) Protective ventilation for patients with acute respiratory distress syndrome. N Engl J Med 338(6):385–387PubMedCrossRefGoogle Scholar
  68. 72.
    Brochard L (1998) Respiratory pressure-volume curves. In: Tobin MJ (ed) Principle and practice of intensive care monitoring. McGraw-Hill, New York, pp 579–616Google Scholar
  69. 73.
    Ranieri VM, Zhang H, Mascia L et al (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93(5): 1320–1328PubMedCrossRefGoogle Scholar
  70. 74.
    Ranieri VM, Giuliani R, Fiore T et al (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: ‘occlusion’ versus ‘constant flow’ technique. Am J Respir Crit Care Med 149(1): 19–27PubMedGoogle Scholar
  71. 75.
    Ranieri VM, Brienza N, Santostasi S et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156(4 Pt l):1082–1091PubMedGoogle Scholar
  72. 76.
    Bates JH, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58(6):1840–1848PubMedGoogle Scholar
  73. 77.
    D’Angelo E, Robatto FM, Calderini E et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70(6):2602–2610PubMedGoogle Scholar
  74. 78.
    Rimensberger PC, Fedorko L, Cutz E, Bohn DJ (1998) Attenuation of ventilator-induced acute lung injury in an animal model by inhibition of neutrophil adhesion by leumedins (NPC 15669). Crit Care Med 26(3):548–555PubMedCrossRefGoogle Scholar
  75. 79.
    Zhang H, Kim YK, Govindarajan A et al (1999) Effect of adrenoreceptors on endotoxininduced cytokines and lipid peroxidation in lung expiants. Am J Respir Crit Care Med 160(5Pt l):1703–1710PubMedGoogle Scholar
  76. 80.
    Grasso S, Mascia L, Del Turco M et al (2002) Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 96(4):795–802PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • E. Crimi
    • 1
  • L. Del Sorbo
    • 1
  • V. M. Ranieri
    • 2
  1. 1.Interdepartmental Division of Critical Care Medicine, Division of Respirology, St. Michael’s HospitalUniversity of TorontoCanada
  2. 2.Department of Anaesthesia and Intensive Care Medicine, S. Giovanni Battista - Molinette HospitalUniversity of TurinTurinItaly

Personalised recommendations