Skip to main content

Interactions Between the Pulmonary Circulation and Ventilation: An Overview for Intensivists

  • Chapter
Respiratory System and Artificial Ventilation
  • 1841 Accesses

Abstract

The heart and the lungs are coupled both anatomically and physiologically in that the cardiovascular and respiratory systems are functionally linked in the respiratory chain (oxygen and carbon-dioxide exchange). Their close proximity within the thorax and the fact that the lungs serve as a conduit between the right and left heart chambers largely account for the mechanical interactions between these two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. West JB (1966) Distribution of blood and gas in lungs. Phys Med Biol 11(3):357–370

    Article  PubMed  CAS  Google Scholar 

  2. Fu Z, Costello ML, Tsukimoto K et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73(1): 123–133

    PubMed  CAS  Google Scholar 

  3. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148(5): 1194–1203

    PubMed  CAS  Google Scholar 

  4. Broccard AF, Hotchkiss JR, Kuwayama N et al (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157(6 Pt 1):1935–1942

    PubMed  CAS  Google Scholar 

  5. Broccard AF, Hotchkiss JR, Suzuki S et al (1999) Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Crit Care Med 27(8):1533–1541

    Article  PubMed  CAS  Google Scholar 

  6. Hotchkiss JR Jr, Blanch L, Naveira A et al (2001) Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 29(8):1593–1598

    Article  PubMed  Google Scholar 

  7. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308

    Article  Google Scholar 

  8. Robotham JL, Lixfeld W, Holland L et al (1980) The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 121(4):677–683

    PubMed  CAS  Google Scholar 

  9. Cheifetz IM, Craig DM, Quick G et al (1998) Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model. Crit Care Med 1998 26(4):710–716

    Article  PubMed  CAS  Google Scholar 

  10. Howell J, Permutt D, Proctor, Riley R (1961) Effect of inflation of the lung on different parts of the pulmonary vascular bed. Journal of Applied Physiology 16:71–76

    PubMed  CAS  Google Scholar 

  11. Sun RY, Nieman GF, Hakim TS, Chang HK (1987) Effects of lung volume and alveolar surface tension on pulmonary vascular resistance. J Appl Physiol 62(4): 1622–1626

    PubMed  CAS  Google Scholar 

  12. Henning RJ (1986) Effects of positive end-expiratory pressure on the right ventricle. J Appl Physiol 61(3):819–826

    PubMed  CAS  Google Scholar 

  13. Romand JA, Donald FA, Suter PM (1995) Acute right ventricular failure, pathophysiology and treatment. Monaldi Arch Chest Dis 50(2): 129–133

    PubMed  CAS  Google Scholar 

  14. Monchi M, Bellenfant F, Cariou A et al (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158(4):1076–1081

    PubMed  CAS  Google Scholar 

  15. Hakim TS, Michel RP, Chang HK (1982) Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol 53(5): 1110–1115

    PubMed  CAS  Google Scholar 

  16. Ducas J, Schick U, Girling L, Prewitt RM (1988) Effects of altered left atrial pressure on pulmonary vascular pressure-flow relationships. Am J Physiol 255(1 Pt 2):H19–H25

    PubMed  CAS  Google Scholar 

  17. Graham R, Skoog C, Oppenheimer L et al (1982) Critical closure in the canine pulmonary vasculature. Circ Res 1982 50(4): 566–572

    PubMed  CAS  Google Scholar 

  18. Warrell DA, Evans JW, Clarke RO et al 1972) Pattern of filling in the pulmonary capillary bed. J Appl Physiol 32(3):346–356

    Google Scholar 

  19. Glazier JB, Hughes JM, Maloney JE, West JB (1969) Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol 26(1):65–76

    PubMed  CAS  Google Scholar 

  20. Borst HG, McGregor M, Whittenberger JL, Berglund E (1956) Influence of pulmonary arterial and left atrial pressure on pulmonary vascular resistance. Circ Res 4:393–399

    PubMed  CAS  Google Scholar 

  21. Malbouisson LM, Muller JC, Constantin JM et al (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163(6): 1444–1450

    PubMed  CAS  Google Scholar 

  22. Crotti S, Mascheroni D, Caironi P et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164(1): 131–140

    PubMed  CAS  Google Scholar 

  23. Kloot TE, Blanch L, Melynne YA et al (2000) Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 161(5):1485–1494

    PubMed  CAS  Google Scholar 

  24. Presson RG Jr, Audi SH, Hanger CC et al (1998) Anatomic distribution of pulmonary vascular compliance. J Appl Physiol 84(1):303–310

    PubMed  Google Scholar 

  25. Hakim TS, Michel RP, Chang HK (1982) Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion. J Appl Physiol 52(3):710–715

    PubMed  CAS  Google Scholar 

  26. Shoukas AA (1975) Pressure-flow and pressure-volume relations in the entire pulmonary vascular bed of the dog determined by two-port analysis. Circ Res 37(6):809–818

    PubMed  CAS  Google Scholar 

  27. Dawson CA (1984) Role of pulmonary vasomotion in physiology of the lung. Physiol Rev 64(2):544–616

    PubMed  CAS  Google Scholar 

  28. Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150(6 Pt 1):1722–1737

    PubMed  CAS  Google Scholar 

  29. Brimioulle S, Lejeune P, Vachiery JL et al (1990) Effects of acidosis and alkalosis on hypoxic pulmonary vasoconstriction in dogs. Am J Physiol 258(2 Pt 2):H347–H353

    PubMed  CAS  Google Scholar 

  30. Puybasset L, Stewart T, Rouby JJ et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnia in patients with acute respiratory distress syndrome. Anesthesiology 80(6): 1254–1267

    Article  PubMed  CAS  Google Scholar 

  31. Feihl F, Eckert P, Brimioulle S et al (2000) Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med 162(1):209–215

    PubMed  CAS  Google Scholar 

  32. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22(10):1568–1578

    Article  PubMed  CAS  Google Scholar 

  33. Glenny RW, Lamm WJ, Albert RK, Robertson HT (1991) Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol 71(2):620–629

    PubMed  CAS  Google Scholar 

  34. Mure M, Domino KB, Lindahl SG et al (2000) Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol 88(3): 1076–1083

    PubMed  CAS  Google Scholar 

  35. Walther SM, Domino KB, Glenny RW, Hlastala MP (1999) Positive end-expiratory pressure redistributes perfusion to dependent lung regions in supine but not in prone lambs. Crit Care Med 27(1):37–45

    Article  PubMed  CAS  Google Scholar 

  36. Glenny RW, Bernard S, Robertson HT, Hlastala MP (1999) Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol 86(2):623–632

    PubMed  CAS  Google Scholar 

  37. Smith JC, Mitzner W (1980) Analysis of pulmonary vascular interdependence in excised dog lobes. J Appl Physiol 1980 48(3):450–467

    PubMed  CAS  Google Scholar 

  38. Albert RK, Lamm WJ, Rickaby DA et al (1993) Lung inflation distends small arteries (<1 mm) in excised dog lungs. J Appl Physiol 75(6):2595–2601

    PubMed  CAS  Google Scholar 

  39. Koyama S, Lamm WJ, Hildebrandt J, Albert RK (1989) Flow characteristics of open vessels in zone 1 rabbit lungs. J Appl Physiol 66(4):1817–1823

    PubMed  CAS  Google Scholar 

  40. Lamm WJ, Kirk KR, Hanson WL et al (1991) Flow through zone 1 lungs utilizes alveolar corner vessels. J Appl Physiol 70(4):1518–1523

    PubMed  CAS  Google Scholar 

  41. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation — perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159(4 Pt 1):1241–1248

    PubMed  CAS  Google Scholar 

  42. Gil J (1980) Organization of microcirculation in the lung. Annu Rev Physiol 42:177–186

    Article  PubMed  CAS  Google Scholar 

  43. Brower R, Wise RA, Hassapoyannes C et al (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58(3):954–963

    PubMed  CAS  Google Scholar 

  44. Permutt S, Howell J, Proctor, Riley R (1961) Effect of lung inflation on static pressure-volume characteristics of pulmonary vessels. J Appl Physiol 16:64–70

    PubMed  CAS  Google Scholar 

  45. Albert RK, Lakshminarayan S, Kirk W, Butler J (1980) Lung inflation can cause pulmonary edema in zone I of in situ dog lungs. J Appl Physiol 49(5):815–819

    PubMed  CAS  Google Scholar 

  46. Broccard A, Shapiro RS, Schmitz LL et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28(2):295–303

    Article  PubMed  CAS  Google Scholar 

  47. Nyren S, Mure M, Jacobsson H et al (1999) Pulmonary perfusion is more uniform in the prone than in the supine position: scintigraphy in healthy humans. J Appl Physiol 86:1135–1141

    PubMed  CAS  Google Scholar 

  48. Kallas HJ, Domino KB, Glenny RW et al (1998) Pulmonary blood flow redistribution with low levels of positive end-expiratory pressure. Anesthesiology 88(5):1291–1299

    Article  PubMed  CAS  Google Scholar 

  49. Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345(8):568–573

    Article  PubMed  CAS  Google Scholar 

  50. Chatte G, Sab JM, Dubois JM et al (1997) Prone position in mechanically ventilated patients with severe acute respiratory failure. Am J Respir Crit Care Med 155(2):473–478

    PubMed  CAS  Google Scholar 

  51. Wiener CM, Kirk W, Albert RK (1990) Prone position reverses gravitational distribution of perfusion in dog lungs with oleic acid-induced injury. J Appl Physiol 68(4): 1386–1392

    PubMed  CAS  Google Scholar 

  52. Puybasset L, Cluzel P, Chao N et al (1998) A computed tomography scan assessment of regional lung volume in acute lung injury. The CT Scan ARDS Study Group. Am J Respir Crit Care Med 158(5 Pt 1):1644–1655

    PubMed  CAS  Google Scholar 

  53. Scillia P, Kafi SA, Melot C et al (2001) Oleic acid-induced lung injury: thin-section CT evaluation in dogs. Radiology 219(3):724–731

    PubMed  CAS  Google Scholar 

  54. Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151 (3 Pt l):737–742

    PubMed  CAS  Google Scholar 

  55. Mutoh T, Lamm WJ, Embree LJ et al (1992) Volume infusion produces abdominal distension, lung compression, and chest wall stiffening in pigs. J Appl Physiol 72(2):575–582

    Article  PubMed  CAS  Google Scholar 

  56. Gattinoni L, D’Andrea L, Pelosi P et al (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269(16):2122–2127

    Article  PubMed  CAS  Google Scholar 

  57. Martynowicz MA, Minor TA, Walters BJ, Hubmayr RD (1999) Regional expansion of oleic acid-injured lungs. Am J Respir Crit Care Med 160(1):250–258

    PubMed  CAS  Google Scholar 

  58. Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150(1):184–193

    PubMed  CAS  Google Scholar 

  59. Malo J, Ali J, Wood LD (1984) How does positive end-expiratory pressure reduce intrapulmonary shunt in canine pulmonary edema? J Appl Physiol 57(4): 1002–1010

    PubMed  CAS  Google Scholar 

  60. Hasan FM, Belier TA, Sobonya RE et al (1982) Effect of positive end-expiratory pressure and body position in unilateral lung injury. J Appl Physiol 52(1):147–154

    PubMed  CAS  Google Scholar 

  61. Hormann C, Baum M, Putensen C et al (1997) Effects of spontaneous breathing with BIPAP on pulmonary gas exchange in patients with ARDS. Acta Anaesthesiol Scand Suppl 111:152–155

    PubMed  CAS  Google Scholar 

  62. Gattinoni L, Pelosi P, Suter PM et al (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158(1):3–11

    PubMed  CAS  Google Scholar 

  63. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164(9):1701–1711

    PubMed  CAS  Google Scholar 

  64. Pappert D, Rossaint R, Slama K et al (1994) Influence of positioning on ventilation-perfusion relationships in severe adult respiratory distress syndrome. Chest 106(5): 1511–1516

    Article  PubMed  CAS  Google Scholar 

  65. Pelosi P, Tubiolo D, Mascheroni D et al (1998) Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157(2):387–393

    PubMed  CAS  Google Scholar 

  66. Guerin C (2006) Ventilation in the prone position in patients with acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 12(1):50–54

    Article  PubMed  Google Scholar 

  67. Mancebo J, Fernandez R, Blanch L et al (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173(11):1233–1239

    Article  PubMed  Google Scholar 

  68. Verkman AS, Matthay MA, Song Y (2000) Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol 278(5):L867–L879

    PubMed  CAS  Google Scholar 

  69. Drake RE, Laine GA (1988) Pulmonary microvascular permeability to fluid and macromolecules. J Appl Physiol 64(2):487–501

    PubMed  CAS  Google Scholar 

  70. Taylor AE (1981) Capillary fluid filtration. Starling forces and lymph flow. Circ Res 49(3):557–575

    PubMed  CAS  Google Scholar 

  71. Goldberg HS, Mitzner W, Barra G (1977) Effect of transpulmonary and vascular pressures on rate of pulmonary edema formation. J Appl Physiol 43(1):14–19

    PubMed  Google Scholar 

  72. Bo G, Hauge A, Nicolaysen G (1977) Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J Appl Physiol 42(4):476–482

    PubMed  CAS  Google Scholar 

  73. Zabner J, Angeli LS, Martinez RR, Sanchez dL (1990) The effects of graded administration of positive end expiratory pressure on the fluid filtration rate in isolated rabbit lungs, using normal lungs, hydrostatic oedema lungs and oleic acid induced oedema. Intensive Care Med 16(2):89–94

    Article  PubMed  CAS  Google Scholar 

  74. Nieman GF, Bredenberg CE, Paskanik AM (1990) Positive end-expiratory pressure accelerates lung water accumulation in high surface tension edema. Surgery 107(2):156–162

    PubMed  CAS  Google Scholar 

  75. Wickerts CJ, Berg B, Blomqvist H (1992) Influence of positive end-expiratory pressure on extravascular lung water during the formation of experimental hydrostatic pulmonary oedema. Acta Anaesthesiol Scand 36(4):309–317

    Article  PubMed  CAS  Google Scholar 

  76. Hirakawa A, Sakamoto H, Shimizu R (1996) Effect of positive end-expiratory pressure on extravascular lung water and cardiopulmonary function in dogs with experimental severe hydrostatic pulmonary edema. J Vet Med Sci 58(4):349–354

    PubMed  CAS  Google Scholar 

  77. Ruiz-Bailen M, Fernandez-Mondejar E, Hurtado-Ruiz B et al (1999) Immediate application of positive-end expiratory pressure is more effective than delayed positive-end expiratory pressure to reduce extravascular lung water. Crit Care Med 27(2):380–384

    Article  PubMed  CAS  Google Scholar 

  78. Colmenero-Ruiz M, Fernandez-Mondejar E, Fernandez-Sacristan MA et al (1997) PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med 155(3):964–970

    PubMed  CAS  Google Scholar 

  79. Pepe PE, Hudson LD, Carrico CJ (1984) Early application of positive end-expiratory pressure in patients at risk for the adult respiratory-distress syndrome. N Engl J Med 311(5):281–286

    Article  PubMed  CAS  Google Scholar 

  80. Corbridge TC, Wood LD, Crawford GP et al (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142(2):311–315

    PubMed  CAS  Google Scholar 

  81. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5): 1327–1334

    PubMed  CAS  Google Scholar 

  82. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1):294–323

    PubMed  CAS  Google Scholar 

  83. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354

    Article  PubMed  CAS  Google Scholar 

  84. Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282(1):54–61

    Article  PubMed  CAS  Google Scholar 

  85. Brower RG, Lanken PN, Maclntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336

    Article  PubMed  Google Scholar 

  86. Grasso S, Fanelli V, Cafarelli A et al (2005) Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 171(9):1002–1008

    Article  PubMed  Google Scholar 

  87. Bshouty Z, Ali J, Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appl Physiol 64(5):1900–1907

    PubMed  CAS  Google Scholar 

  88. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116(1 Suppl):9S–15S

    PubMed  CAS  Google Scholar 

  89. Taylor AE, Khimenko PL, Moore TM, Adkins WK (1997) Fluid Balance. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung scientific foundations. Lippincott-Raven. Philadelphia, pp 1549–1566

    Google Scholar 

  90. Dreyfuss D, Saumon G (1996) Synergistic interaction between alveolar flooding and distension during mechanical ventilation. Am J Respir Crit Care Med 153(Suppl):A12

    Google Scholar 

  91. Albert RK, Lakshminarayan S, Hildebrandt J et al (1979) Increased surface tension favors pulmonary edema formation in anesthetized dogs’ lungs. J Clin Invest 63(5):1015–1018

    PubMed  CAS  Google Scholar 

  92. Albert RK, Lakshminarayan S, Charan NB et al (1983) Extra-alveolar vessel contribution to hydrostatic pulmonary edema in in situ dog lungs. J Appl Physiol 54(4): 1010–1017

    PubMed  CAS  Google Scholar 

  93. West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries in the intensive care setting. Schweiz Med Wochenschr 122(20):751–757

    PubMed  CAS  Google Scholar 

  94. West JB, Mathieu-Costello O (1995) Vulnerability of pulmonary capillaries in heart disease. Circulation 92(3):622–631

    PubMed  CAS  Google Scholar 

  95. West JB, Mathieu-Costello O, Jones JH et al (1993) Stress failure of pulmonary capillaries in racehorses with exerciseinduced pulmonary hemorrhage. J Appl Physiol 75(3): 1097–1109

    PubMed  CAS  Google Scholar 

  96. West JB, Mathieu-Costello O (1992) High altitude pulmonary edema is caused by stress failure of pulmonary capillaries. Int J Sports Med 13(Suppl 1):S54–S58

    PubMed  Google Scholar 

  97. West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340(8822):762–767

    Article  PubMed  CAS  Google Scholar 

  98. West JB, Mathieu-Costello O (1992) Strength of the pulmonary blood-gas barrier. Respir Physiol 88(1–2): 141–148

    Article  PubMed  CAS  Google Scholar 

  99. Tsukimoto K, Mathieu-Costello O, Prediletto R et al (1991) Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol 71(2):573–582

    PubMed  CAS  Google Scholar 

  100. West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70(4): 1731–1742

    PubMed  CAS  Google Scholar 

  101. Namba Y, Kurdak SS, Fu Z et al (1995) Effect of reducing alveolar surface tension on stress failure in pulmonary capillaries. J Appl Physiol 79(6):2114–2121

    PubMed  CAS  Google Scholar 

  102. Broccard AF, Vannay C, Feihl F, Schaller MD (2002) Impact of low pulmonary vascular pressure on ventilator-induced lung injury. Crit Care Med 30(10):2183–2190

    Article  PubMed  Google Scholar 

  103. Han B, Lodyga M, Liu M (2005) Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc 2(3):181–187

    Article  PubMed  CAS  Google Scholar 

  104. Lionetti V, Recchia FA, Ranieri VM (2005) Overview of ventilator-induced lung injury mechanisms. Curr Opin Crit Care 11(1):82–86

    Article  PubMed  Google Scholar 

  105. Adhikari NK, Burns KE, Friedrich JO et al (2007) Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ 334(7597):779

    Article  PubMed  Google Scholar 

  106. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354(24):2564–2575

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Broccard, A.F., Feihl, F. (2008). Interactions Between the Pulmonary Circulation and Ventilation: An Overview for Intensivists. In: Lucangelo, U., Pelosi, P., Zin, W.A., Aliverti, A. (eds) Respiratory System and Artificial Ventilation. Springer, Milano. https://doi.org/10.1007/978-88-470-0765-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0765-9_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0764-2

  • Online ISBN: 978-88-470-0765-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics