Skip to main content

Elastic and Resistive Properties of the Respiratory System

  • Chapter
Respiratory System and Artificial Ventilation
  • 1886 Accesses

Abstract

This chapter will consider basic aspects of respiratory-system mechanics in order to provide a background for the analysis of the most common disorders related to the elastic and resistive components of the lung and chest wall. Excellent reviews articles can be consulted, if further details are desired [19b].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330

    PubMed  CAS  Google Scholar 

  2. Fenn WO, Rahn H (eds) (1964) Handbook of physiology, Section 3, Respiration, Volume 1. American Physiological Society, Washington, DC, pp 357–476

    Google Scholar 

  3. Campbell EJM, Agostoni E, Davis JN (eds) (1970) The respiratory muscles: mechanics and neural control. Lloyd-Luke, London

    Google Scholar 

  4. Hoppin Jr FG, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. Marcel Dekker, Inc, New York, pp 83–162

    Google Scholar 

  5. McFadded Jr ER, Ingram Jr RH (1980) Clinical application and interpretation of airway physiology. In: Nadel JA (ed) Physiology and pharmacology of the airways. Marcel Dekker, New York, pp 297–324

    Google Scholar 

  6. Forster II RE, DuBois AB, Briscoe WA, Fisher AB (eds) (1986) The lung: physiologic basis of pulmonary function tests. Year Book Medical Publishers, Chicago, pp 65–114

    Google Scholar 

  7. Macklem PT, Mead J (eds) (1986) Handbook of physiology, Section 3, The respiratory system, Volume III. American Physiological Society, Bethesda, pp 113–461

    Google Scholar 

  8. Milic-Emili J (eds) (1999) Respiratory mechanics. European Respiratory Society, Leeds

    Google Scholar 

  9. Milic-Emili J, Lucangelo U, Pesenti A, Zin WA (eds) (1999) Basics of respiratory mechanics and artificial ventilation. Springer, Milan

    Google Scholar 

  10. Hamid Q, Shannon J, Martin J (eds) (2005) Physiologic basis of respiratory disease. BC Dekker, Inc, Hamilton, pp 15–131

    Google Scholar 

  11. Rodarte JR, Rehder K (1986) Dynamics of respiration. In: Macklem PT, Mead J (eds) Handbook of physiology, Section 3, The respiratory system, Volume III. American Physiological Society, Bethesda, pp 131–144

    Google Scholar 

  12. Baydur A, Behrakis PK, Zin WA et al (1982) Simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791

    PubMed  CAS  Google Scholar 

  13. Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211

    PubMed  CAS  Google Scholar 

  14. Zin WA, Milic-Emili J (1998) Esophageal pressure measurement. In: Tobin MJ (ed) Principles and practice of intensive care monitoring. McGraw-Hill, New York, pp 545–552

    Google Scholar 

  15. Zin WA, Milic-Emili (2005) Esophageal pressure measurement. In: Hamid Q, Shannon J, Martin J (eds) Physiologic basis of respiratory disease. BC Dekker, Hamilton, pp 639–647

    Google Scholar 

  16. von Neergaard K (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Ges Exp Med 66:373–394

    Article  Google Scholar 

  17. Pattle RE (1955) Properties, function and origin of the alveolar lining fluid. Nature 175:1125–1126

    Article  PubMed  CAS  Google Scholar 

  18. Brown ES, Johnson RP, Clements JA (1959) Pulmonary surface tension. J Appl Physiol 14:717–720

    PubMed  CAS  Google Scholar 

  19. Schurch S, Goerke J, Clements JA (1976) Direct determination of surface tension in the lung. Prof Natl Acad Sci USA 73:4698–4708

    Article  CAS  Google Scholar 

  20. King RJ, Clements JA (1985) Lipid synthesis and surfactant turnover in the lungs. In: Fishman AP, Fisher AB (eds) Handbook of physiology, Section 3, The respiratory system, Volume I. American Physiological Society, Bethesda, pp 309–336

    Google Scholar 

  21. Rahn H, Otis AB, Chadwick LE, Fenn WO (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178

    Google Scholar 

  22. Rohrer F (1915) Der Strömungswiderstand der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pfluegers Arch 162:225–299

    Article  Google Scholar 

  23. Rocco PRM, Zin WA (1995) Modelling the mechanical effects of tracheal tubes on normal subjects. Eur Respir J 8:121–126

    Article  PubMed  CAS  Google Scholar 

  24. Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9:387–405

    Article  PubMed  CAS  Google Scholar 

  25. Similowski T, Levy P, Corbeil C et al (1989) Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 67:2219–2229

    PubMed  CAS  Google Scholar 

  26. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anesthetized cats. J Appl Physiol 64:441–450

    PubMed  CAS  Google Scholar 

  27. Auler Jr JOC, Saldiva PHN, Carvalho CR et al (1990) Flow and volume dependence of respiratory system mechanics during constant flow ventilation in normal subjects and in adult respiratory distress syndrome. Crit Care Med 18:1080–1086

    Article  PubMed  Google Scholar 

  28. D’Angelo E, Robatto FM, Calderini E et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70:2602–2610

    PubMed  CAS  Google Scholar 

  29. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Chest wall and respiratory system mechanics in cats: effects of flow and volume. J Appl Physiol 64:2636–2646

    PubMed  CAS  Google Scholar 

  30. D’Angelo E, Prandi E, Tavola M et al (1994) Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol 77:883–887

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Zin, W.A. (2008). Elastic and Resistive Properties of the Respiratory System. In: Lucangelo, U., Pelosi, P., Zin, W.A., Aliverti, A. (eds) Respiratory System and Artificial Ventilation. Springer, Milano. https://doi.org/10.1007/978-88-470-0765-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0765-9_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0764-2

  • Online ISBN: 978-88-470-0765-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics