Prone Ventilation To Prevent Ventilator-Associated Pneumonia

  • P. Beuret


Ventilator-associated pneumonia (VAP) refers to pneumonia that arises more than 48 h after endotracheal intubation. VAP is the most common hospitalacquired infection among patients requiring mechanical ventilation and is associated with high morbidity, mortality and health-care costs [1,2], emphasising the need of risk-reduction strategies. Some strategies are strongly recommended by recent guidelines: general infection control measures, use of non-invasive ventilation whenever possible, semirecumbent position and continuous aspiration of subglottic secretions [1]. Prone positioning has repeatedly been shown to improve arterial oxygenation in patients with hypoxaemic respiratory failure who receive mechanical ventilation. Unfortunately, three randomised studies failed to show an improvement in survival [3, 4, 5]. However, prone positioning might interfere with the mechanisms involved in the pathogenesis of VAP.


Prone Position Comatose Patient Hypoxemic Acute Respiratory Failure Semirecumbent Position Tracheal Tube Cuff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The American Thoracic Society and the Infectious Diseases Society of America guideline Committee (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  2. 2.
    Craven D (2006) Preventing ventilator-associated pneumonia in adults. Chest 130:251–260PubMedCrossRefGoogle Scholar
  3. 3.
    Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573PubMedCrossRefGoogle Scholar
  4. 4.
    Guerin C, Gaillard S, Lemasson S et al (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure. JAMA 292:2379–2387PubMedCrossRefGoogle Scholar
  5. 5.
    Mancebo J, Fernandez R, Blanch L et al (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239PubMedCrossRefGoogle Scholar
  6. 6.
    Dullenkopf A, Gerber A, Weiss M (2003) Fluid leakage past tracheal tube cuffs: evaluation of the new Microcuff endotracheal tube. Intensive Care Med 29:1849–1853PubMedCrossRefGoogle Scholar
  7. 7.
    Blunt MC, Young PJ, Patil A, Haddock A (2001) Gel lubrication of the tracheal tube cuff reduces pulmonary aspiration. Anesthesiology 95:377–381PubMedCrossRefGoogle Scholar
  8. 8.
    Seegobin RD, Van Hasselt GL (1986) Aspiration beyond endotracheal cuffs. Can Anaesth Soc J 33:273–279PubMedCrossRefGoogle Scholar
  9. 9.
    Orozco-Levi M, Torres A, Ferrer M et al (1995) Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am J Respir Crit Care Med 152:1387–1390PubMedGoogle Scholar
  10. 10.
    Orozco-Levi M, Félez M, Martinez-Miralles E et al (2003) Gastro-oesophageal reflux in mechanically ventilated patients: effects of an oesophageal balloon. Eur Respir J 22:348–353PubMedCrossRefGoogle Scholar
  11. 11.
    Beuret P, Carton MJ, Nourdine K et al (2007) Inhalation de sécrétions oropharyngées autour du ballonnet des sondes d’intubation: comparaison de la position dorsale demi-assise et du décubitus ventral. Réanimation 16(Suppl 1):SP18Google Scholar
  12. 12.
    Beuret P, Carton MJ, Nourdine K et al (2002) Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 28:564–569PubMedCrossRefGoogle Scholar
  13. 13.
    Young PJ, Rollinson M, Downward G, Henderson S (1997) Leakage of fluid past the tracheal tube cuff in a benchtop model. Br J Anaesth 78:557–562PubMedGoogle Scholar
  14. 14.
    Reignier J, Thenoz-Jost N, Fiancette M et al (2004) Early enterai nutrition in mechanically ventilated patients in the prone position. Crit Care Med 32:94–99PubMedCrossRefGoogle Scholar
  15. 15.
    Keller C, Brimacombe J (1998) Bronchial mucus transport velocity in paralyzed anesthetized patients: a comparison of the laryngeal mask airway and cuffed tracheal tube. Anaesth Analg 86:1280–1282CrossRefGoogle Scholar
  16. 16.
    Priolet B, Tempelhoff G, Millet J et al (1993) Ventilation assistée en décubitus ventral: evaluation tomodensitométrique de son efficacité dans le traitement des condensations pulmonaires. Réan Urg 2(2):81–85CrossRefGoogle Scholar
  17. 17.
    Lachmann RA, Van Kaam AH, Haitsma JJ, Lachmann B (2007) High positive end-expiratory pressure levels promote bacterial translocation in experimental pneumonia. Intensive Care Med [Epub ahead of print]Google Scholar
  18. 18.
    Richard JC, Lavenne F, Lebars D et al (2005) Effets du décubitus ventral et du niveau de PEP sur le recrutement et la distribution de la ventilation alvéolaire étudiés en tomographie par emission de positons. Réanimation 14(Suppl 1):SP136Google Scholar
  19. 19.
    Rios Vieira SR, Goldstein I, Lenaour G et al (2003) Experimental ventilator-associated pneumonia: distribution of lung infection and consequences for lung aeration. Braz J Infect Dis 7(3):216–223Google Scholar
  20. 20.
    Beuret P, Nourdine K, Carton MJ et al (2007) Pneumopathies acquises sous ventilation mécanique chez les patients comateux: absence d’impact du décubitus ventral précoce. Réanimation 16(Suppl 1):SOE9Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • P. Beuret
    • 1
  1. 1.Intensive Care UnitCentre HospitalierRoanneFrance

Personalised recommendations