Control of Breathing

  • F. B. Santos
  • L. K. S. Nagato
  • W. A. Zin


The physiological control of the respiratory system is unique among organ systems. Breathing is essential to life and must occur 24 h a day, 365 days a year, in the conscious or unconscious state, awake or asleep. At the same time, humans and other mammals need to be able to temporarily interrupt the normal pattern of breathing to perform other functions, such as eating and vocalising [1]. The voluntary and involuntary control of the respiratory system is unequalled and a very complex process. This chapter will appraise some relevant issues to improve clinicians’ understanding of the normal mechanism of breathing and its possible disorders in disease.


Chronic Obstructive Pulmonary Disease Continuous Positive Airway Pressure Chronic Obstructive Pulmonary Disease Patient Carotid Body Central Pattern Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwartzstein RM, Paker MJ (2006) Respiratory physiology. A clinical approach. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Gallego J, Nsegbe E, Durand E (2001) Learning in respiratory control. Behav Modif 25:495–512PubMedCrossRefGoogle Scholar
  3. 3.
    West JB (2000) Respiration physiology. 6th edition. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Ganong WF (1993) Regulation of respiration. In: Review of medical physiology, 16th edition. Appleton & Lange, Norwalk, pp 611–619Google Scholar
  5. 5.
    Bee DH (1993) The carotid body: a review of its anatomy, physiology and clinical importance. Monaldi Arch Chest Dis 48:48–53PubMedGoogle Scholar
  6. 6.
    Comroe JH (1974) Physiology of respiration: an introductory text. 2nd Edition. Chicago: Yearbook Publishers, ChicagoGoogle Scholar
  7. 7.
    Montaldo-Caruana B, Gleeson K, Zwillich CW (2000) The control of breathing in clinical practice. Chest 117:205–225CrossRefGoogle Scholar
  8. 8.
    Gonzales C, Almara L, Obeso A et al (1192) Oxygen and acid chemoreception in the carotid body receptors. Trends Neurosci 15:146–153CrossRefGoogle Scholar
  9. 9.
    Bruce EN, Cherniak NS (1987) Central chemoreceptors. J Appl Physiol 62:389–402PubMedGoogle Scholar
  10. 10.
    Bledsoe SW, Hornbein TF (1981) Central chemoreceptors and the regulation of their chemical environment. In: Hornbein TF (ed) Regulation of breathing (part I). Marcel Dekker, New York, pp 347–428Google Scholar
  11. 11.
    Manning HL, Schwartzstein RM (1995) Pathophysiology of dyspnea. N Engl J Med 333:547–553CrossRefGoogle Scholar
  12. 12.
    Sant’Ambrogio G (1987) Nervous receptors of the tracheobronchial tree. Ann Rev Physiol 49:611–627Google Scholar
  13. 13.
    Widdicombe J (2006) Reflexes from the lungs and airways: historical perspective. J Appl Physiol 101:628–634PubMedCrossRefGoogle Scholar
  14. 14.
    Sampson SR, Vidruk EH (1975) Properties of ‘irritant’ receptors in canine lungs. Respir Physiol 25:9–22PubMedCrossRefGoogle Scholar
  15. 15.
    Sant’Ambrogio G (1982) Information arising from the tracheobronchial tree of mammals. Physiol Rev 62:531–569PubMedGoogle Scholar
  16. 16.
    Schwartzstein R, Lilly J, Israel E et al (1991) Breathlessness of asthma differs from that of external resistive loading. Am Rev Respir Dis 143(suppl):A596Google Scholar
  17. 17.
    Widdicombe, J (2001) Airway receptors. Respir Physiol 125:3–15PubMedCrossRefGoogle Scholar
  18. 18.
    Mitchell RA, Berger AJ (1981) Neural regulation of respiration. In: Hornbein TF (ed) Regulation of breathing (part I). Marcel Dekker, New York, pp 541–620Google Scholar
  19. 19.
    Duron B (1981) Intercostal and diaphragmatic muscle endings and afferents. In: Hornbein TF (ed) Regulation of breathing (part I). Marcel Dekker, New York, pp 473–540Google Scholar
  20. 20.
    Berger AJ, Mitchell RA, Severinghaus JW (1977) Regulation of respiration, Part II. N Engl J Med 297:138–143PubMedCrossRefGoogle Scholar
  21. 21.
    von Euler C (1983) On the central pattern generator for the basic breathing rhythmicity. J Appl Physiol 55:1647–1659Google Scholar
  22. 22.
    Mithoeffer JC (1964) Breath holding. In: Handbook of physiology: respiration (section 3, vol II). American Physiology Society, Washington, DC 38:1011–1025Google Scholar
  23. 23.
    Ramirez JM, Viemari JC (2005) Determinants of inspiratory activity. Respir Physiol Neurobiol 147:145–157PubMedCrossRefGoogle Scholar
  24. 24.
    Adriaensen D, Brouns I, Pintelon I et al (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: Comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970PubMedCrossRefGoogle Scholar
  25. 25.
    Ganong WF (1993) Pulmonary function. In: Review of medical physiology. 16th ed. Appleton & Lange, Norwalk, pp 587–603Google Scholar
  26. 26.
    Mountain R, Zwillich CW, Weil JV (1978) Hypoventilation in obstructive lung disease. N Engl J Med 298:521–525PubMedCrossRefGoogle Scholar
  27. 27.
    Chan CS, Bye PTP, Woolcock AJ et al (1990) Eucapnia and hypercapnia in patients with chronic airflow limitation. Am Rev Respir Dis 141:861–866PubMedGoogle Scholar
  28. 28.
    Kalhoff H, Werkmiester F, Kiwull-Schone L et al (1994) The Haldane effect under different acid-base conditions in premature and adult humans. Adv Exp Med Biol 361:353–361PubMedGoogle Scholar
  29. 29.
    Gorini M, Spinelli A, Ginanni R et al (1990) Neural respiratory drive and neuromuscular coupling in patients with chronic obstructive pulmonary disease. Chest 98:1179–1186PubMedCrossRefGoogle Scholar
  30. 30.
    Nogués MA, Roncoroni AJ, Benarroch E (2002) Breathing control in neurological diseases. Clin Auton Res 12:440–449PubMedCrossRefGoogle Scholar
  31. 31.
    Johnson DC, Homeyoun K (1994) Central control of ventilation in neuromuscular disease. Clin Chest Med 15:607–615PubMedGoogle Scholar
  32. 32.
    Opdal SH, Rognum TO (2004) New insight into sudden infant-death syndrome. Lancet 364:825–826PubMedCrossRefGoogle Scholar
  33. 33.
    Hunt CE (2005) Gene-environment interactions: implications for sudden unexpected deaths in infancy. Arch Dis Child 90:48–53PubMedCrossRefGoogle Scholar
  34. 34.
    Sin DD, Man GCW (2003) Cheyne-Stokes respiration. A consequence of a broken heart? Chest 124:1627–1628PubMedCrossRefGoogle Scholar
  35. 35.
    Hanly PJ, Zuberi-Khokhar S (1996) Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med 153:272–276PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • F. B. Santos
    • 1
  • L. K. S. Nagato
    • 1
  • W. A. Zin
    • 1
  1. 1.Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations