Three-dimensional Imaging

  • Luc Soler
  • Ronan Cahill
  • Jacques Marescaux


Modern medical imaging provides essential preoperative knowledge of patient anatomy and pathology. This imaging is composed of many kinds of techniques and protocols, the choice of which is fully dependent on the targeted structures that practitioners want to see and analyse. Virtual reality can then be used to facilitate interpretation. Virtual reality is based on three main concepts: immersion, navigation and interaction (Fig. 7.1). Immersion is a mental concept consisting of the feeling of being inside a virtual world visualized on a screen or using immersive devices such as a realistic environment or a head mounted display. Navigation is a concept that allows the virtual world to be traversed. Finally, interaction is a physical concept that allows modification of the properties of the virtual world.


Laparoscopic Cholecystectomy Virtual Reality Augmented Reality Virtual World Common Bile Duct Stone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Millat B, Borie F (2000) Common bile duct stones and their complications. Rev Prat 50:2123–2129PubMedGoogle Scholar
  2. 2.
    Hugier M (2001) Prospective analysis of a scoring system to predict choledocholithiasis (Br J Surg 2000; 87:1176–1181). Br J Surg 88:314–315PubMedCrossRefGoogle Scholar
  3. 3.
    Lincender L, Sadagic E, Vrcic D et al (2000) Magnetic resonance cholangiography in patients with bile duct obstruction. Radiol Oncol 34:319–324Google Scholar
  4. 4.
    Ferrari FS, Fantozzi F, Tasciotti L et al (2005) US, MRCP, CCT and ERCP: a comparative study in 131 patients with suspected biliary obstruction. Med Sci Mont 11(3):MT8–178Google Scholar
  5. 5.
    Yamakawa T, Sakai S, Mu ZB et al (2000) Laparoscopic management of common bile duct stones. J Hepatobiliary Pancreat Surg 7:9–14PubMedCrossRefGoogle Scholar
  6. 6.
    Prat F, Meduri B, Ducot B et al (1999) Prediction of common bile duct stones by noninvasive tests. Ann Surg 229:362–368PubMedCrossRefGoogle Scholar
  7. 7.
    Tham TC, Lichtenstein DR, Vandervoort J et al (1998) Role of endoscopic retrograde cholangio pancreatography for suspected choledocholithiasis in patients undergoing laparoscopic cholecystectomy. Gastrointest Endosc 47:50–56PubMedCrossRefGoogle Scholar
  8. 8.
    Ohtani T, Kawai C, Shirai Y et al (1997) Intra-operative ultrasonography versus cholangiography during laparoscopic cholecystectomy: a prospective comparative study. J Am Coll Surg 185:274–282PubMedGoogle Scholar
  9. 9.
    Cotton PB, Baillie J, Pappas TN et al (1991) Laparoscopic cholecystectomy and the biliary endoscopist. Editorial. Gastrointest Endosc 37:94–96PubMedCrossRefGoogle Scholar
  10. 10.
    Falcone RA Jr, Fegelman EJ, Nussbaum MS et al (1999) A prospective comparison of laparoscopic ultrasound vs intra-operative cholangiogram during laparoscopic cholecystectomy. Surg Endosc 13:784–788PubMedCrossRefGoogle Scholar
  11. 11.
    Sodickson DK, McKenzie CA, Ohliger MA et al (2002) Recent advances in image reconstruction, coil sensitivity calibration, and coil array design for SMASH and generalized parallel MRI. MAG-MA 13:158–163PubMedGoogle Scholar
  12. 12.
    Wang Y (2000) Description of parallel imaging in MRI using multiple coils. Magn Reson Med 44:495–499PubMedCrossRefGoogle Scholar
  13. 13.
    Dwyer SJ III, Stewart BK, Sayre JW et al (1992) Performance characteristics and image fidelity of gray scale monitors. Radiographics 12:765–772PubMedGoogle Scholar
  14. 14.
    Hangiandreou NJ, Fetterly KA, Felmlee JP (1999) Optimisation of contrast detail based method for electronic image display quality evaluation. J Digit Imaging 12:60–67PubMedCrossRefGoogle Scholar
  15. 15.
    Hess RF, Liu CH, Wang YZ (2002) Luminance spatial scale and local stereosensitivity. Vision Res 42:331–342PubMedCrossRefGoogle Scholar
  16. 16.
    Krissian K, Malandain G, Ayache N (1996) Directional anisotropic diffusion applied to segmentation of vessels in 3D images. INRIA France: RR-3064Google Scholar
  17. 17.
    Simone M, Mutter D, Rubino F et al (2004) three-Dimensional virtual cholengioscopy, a reliable tool for the diagnosis of common bile duct stones. Ann Surg 240:82–88PubMedCrossRefGoogle Scholar
  18. 18.
    Vasilescu C, Filippi della Palavesa M, Coumaros D et al (2001) Cholangite sclérosante primitive: rôle de la cholangio-pancréatographie par IRM. Feuillets de Radiol 41:340–347Google Scholar
  19. 19.
    Cannard L, Leclerc JC, DeBelle L et al (2001) Exploration de la pathologie de ľampoule de Vater en cholangio IRM. Feuillets de Radiol 41:215–222Google Scholar
  20. 20.
    Burtin P (1998) Cost-effectiveness of various diagnostic and therapeutic approaches to lithiasis of the common bile duct. Gastroenterol Clin Biol 22(Suppl 5): B30–B38PubMedGoogle Scholar
  21. 21.
    Scheiman JM, Carlos RC, Barnett JL et al (2001) Can endoscopic ultrasound or magnetic resonance cholangiopancreatography replace ERCP in patients with suspected biliary disease? A prospective trial and cost analysis. Am J Gastroenterol 96:2900–2904PubMedCrossRefGoogle Scholar
  22. 22.
    Savader SJ, Lillemoe KD, Prescot CA et al (1997) Laparoscopic cholecystectomy-related bile duct injuries: a health and financial disaster. Ann Surg 225:268–273PubMedCrossRefGoogle Scholar
  23. 23.
    Kern KA (1997) Malpractice litigation involving laparoscopic cholecystectomy. Cost, cause, and consequences. Arch Surg 132:392–297; discussion 397–398PubMedGoogle Scholar
  24. 24.
    Hugh TB (2002) New strategies to prevent laparoscopic bile duct injury-surgeons can learn from pilots. Surgery 132:826–835PubMedCrossRefGoogle Scholar
  25. 25.
    Marmitt G, Friedrich H, Slusallek P (2006) Interactive volume rendering with ray tracing. Eurographics state-of-the art report 2006. STARs. Wyvill B, Wilkie A (eds), Vienna, September 6–8, pp 115–136Google Scholar
  26. 26.
    Seong W, Kim EJ, Park JW (2004) Automatic segmentation technique without user modification for 3D visualization in medical image. CIS 2004, LNCS 3314:595–600Google Scholar
  27. 27.
    Schenk A, Prause G, Peitgen HO (2000) Efficient semiautomatic segmentation of 3D objects in medical images. MICCAI 2000. LNCS 1935:186–195Google Scholar
  28. 28.
    Young YN, Levy D (2006) Registration-based morphing of active contours for segmentation of CT scans. Math Biosci Eng 2:79–96Google Scholar
  29. 29.
    Camara O, Colliot O, Bloch I (2004) Computational modeling of thoracic and abdominal anatomy using spatial relationships for image segmentation. Real Time Imaging 10:263–273CrossRefGoogle Scholar
  30. 30.
    Kitasaka T, Ogawa H, Yokoyama K et al (2005) Automated extraction of abdominal organs from uncontrasted 3D abdominal X-Ray CT images based on anatomical knowledge. Journal of Computer Aided Diagnosis of Medical Images 9:1–14Google Scholar
  31. 31.
    Soler L, Delingette H, Malandain G et al (2001) Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg 6:131–142PubMedCrossRefGoogle Scholar
  32. 32.
    Simone M, Mutter D, Rubino F et al (2004) Three-dimensional virtual cholangioscopy: a reliable tool for the diagnosis of common bile duct stones. Ann Surg 240:82–88PubMedCrossRefGoogle Scholar
  33. 33.
    Fasquel JB, Agnus V, Lamy J (2006) An efficient and generic extension to ITK to process arbitrary shaped regions of interest. Computer Methods Programs Biomed 81:1–7Google Scholar
  34. 34.
    Fasquel JB, Agnus V, Moreau J et al (2006) A medical image segmentation system based on the optimal management of the regions of interest using topological medical knowledge. Computer Methods Programs Biomed 82:216–230CrossRefGoogle Scholar
  35. 35.
    Fasquel JB, Brocker G, Moreau J et al (2006) A modular and evolutive component oriented software architecture for patient modelling. Computer Methods Programs Biomed 83:222–233CrossRefGoogle Scholar
  36. 36.
    Meinzer HP, Schemmer P, Schöbinger M et al (2004) Computer-based surgery planning for living liver donation. 20th ISPRS Congress, Istanbul 2004, International Archives of Photogrammetry and Remote Sensing, Vol. XXXV, Part B, pp 291–295Google Scholar
  37. 37.
    Numminen K, Sipilä O, Mäkisalo H (2005) Preoperative hepatic 3D models: virtual liver resection using three-dimensional imaging technique. Eur J Radiol 56:179–184PubMedCrossRefGoogle Scholar
  38. 38.
    Radtke A, Nadalin S, Sotiropoulos GC et al (2007) computer-assisted operative planning in adult living donor liver transplantation: a new way to resolve the dilemma of the middle hepatic vein. World J Surg 31:175–185PubMedCrossRefGoogle Scholar
  39. 39.
    Koehl C, Soler L, Marescaux J (2002) A PACS based interface for 3D anatomical structures visualization and surgical planning. SPIE proceeding. 4681:17–24CrossRefGoogle Scholar
  40. 40.
    Allard J, Cotin S, Faure F et al (2007) SOFA—an open source framework for medical simulation. Stud Health Technol Inform 125:13–18PubMedGoogle Scholar
  41. 41.
    Marescaux J, Rubino F, Arena M, Soler L (2004) Augmented Reality assisted laparoscopic adrenalectomy. JAMA 292:2214–2215PubMedCrossRefGoogle Scholar
  42. 42.
    Nicolau S, Pennec X, Soler L et al (2003) Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by Augmented Reality. IS4TM. LNCS 2673:270–283Google Scholar
  43. 43.
    Nicolau S, Garcia A, Pennec X et al (2005) An Augmented Reality system to guide radio-frequency tumor ablation. Journal of Computer Animation and Virtual Worlds 16:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Luc Soler
    • 1
  • Ronan Cahill
    • 1
  • Jacques Marescaux
    • 1
  1. 1.IRCAD/EITS InstituteStrasbourgFrance

Personalised recommendations