Pathogenesis of Antiretroviral Treatment-Associated Metabolic Syndrome

  • J. Capeau
  • M. Caron
  • F. Boccara


Highly active antiretroviral therapy (ART) with protease inhibitors (PIs) and nucleoside analogue inhibitors of viral reverse transcriptase (NRTI) allowed a major reduction in the severity and morbidity of HIV infection; however, these drugs were associated with the occurrence of secondary effects collectively termed “ART-related lipodystrophy or metabolic syndrome.” This syndrome is defined by alterations in body-fat repartition with peripheral fat loss and/or central fat accumulation together with metabolic disorders such as hypertriglyceridemia (hyper-TG), hypercholesterolemia, and insulin resistance sometimes with altered glucose tolerance. This set of abnormalities shows some similarities with those present in the very common metabolic or insulin-resistance syndrome and some of the pathophysiological mechanisms are probably the same. In addition, the ART-related metabolic syndrome probably results from alterations directly related to the treatment and also probably to the ongoing infection in the context of altered immunity and modified cytokine profile, which most likely enhances its severity and could be responsible for its specific features.


Insulin Resistance Adipose Tissue Metabolic Syndrome Acquir Immune Induce Insulin Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grundy S, Cleeman JI, Daniels SR et al (2005) Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement. Circulation 112:2735–2752CrossRefPubMedGoogle Scholar
  2. 2.
    Day C (2007) Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res 4:32–38CrossRefPubMedGoogle Scholar
  3. 3.
    Mondy K, Overton ET, Grubb J et al (2007) Metabolic syndrome in HIV-infected patients from an urban, midwestern US outpatient population. Clin Infect Dis 44:726–734CrossRefPubMedGoogle Scholar
  4. 4.
    Jacobson DL, Tang AM, Spiegelman D et al (2006) Incidence of metabolic syndrome in a cohort of HIV-infected adults and prevalence relative to the US population (National Health and Nutrition Examination Survey). J Acquir Immune Defic Syndr 43:458–466CrossRefPubMedGoogle Scholar
  5. 5.
    Bonfanti P, Ricci E, de Socio G et al; CISAI Study Group (2006) Metabolic syndrome: a real threat for HIV-positive patients?: results from the SIMONE study. J Acquir Immune Defic Syndr 42:128–131CrossRefPubMedGoogle Scholar
  6. 6.
    Estrada V, Martinez-Larrad MT, Gonzalez-Sanchez JL et al (2006) Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism 55:940–945CrossRefPubMedGoogle Scholar
  7. 7.
    Samaras K, Wand H, Law M et al (2007) Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reac-tive protein, and hypoadiponectinemia. Diabetes Care 30:113–119CrossRefPubMedGoogle Scholar
  8. 8.
    Leow MK, Addy CL, Mantzoros CS (2003) Clinical review 159: Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies. J Clin Endocrinol Metab 88:1961–1976CrossRefPubMedGoogle Scholar
  9. 9.
    Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMedGoogle Scholar
  10. 10.
    Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789CrossRefPubMedGoogle Scholar
  11. 11.
    Perseghin G, Petersen K, Shulman GI (2003) Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 27(Suppl 3):S6–11CrossRefPubMedGoogle Scholar
  12. 12.
    Fasshauer M, Paschke R (2003) Regulation of adipocytokines and insulin resistance. Diabetologia 46:1594–1603CrossRefPubMedGoogle Scholar
  13. 13.
    Mattison RE, Jensen M (2003) The adipocyte as an endocrine cell. Curr Opin Endocrinol Diabetes 10317–10321Google Scholar
  14. 14.
    Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–453CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33CrossRefPubMedGoogle Scholar
  16. 16.
    Yamauchi T, Nio Y, Maki T et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339CrossRefPubMedGoogle Scholar
  17. 17.
    Ouchi N, Kihara S, Funahashi T et al (2003) Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 14:561–566CrossRefPubMedGoogle Scholar
  18. 18.
    Ruan H, Lodish HF (2003) Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 14:447–455CrossRefPubMedGoogle Scholar
  19. 19.
    Lagathu C, Bastard JP, Auclair M et al (2003) Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 311:372–379CrossRefPubMedGoogle Scholar
  20. 20.
    Montague CT, O’Rahilly S (2000) The perils of portliness: causes and consequences of visceral adiposity. Diabetes 49:883–888CrossRefPubMedGoogle Scholar
  21. 21.
    Lafontan M, Berlan M (2003) Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 24:276–283CrossRefPubMedGoogle Scholar
  22. 22.
    Stulnig TM, Waldhausl W (2004) 11beta-hydroxysteroid dehydrogenase type 1 in obesity and type 2 diabetes. Diabetologia 47:1–11CrossRefPubMedGoogle Scholar
  23. 23.
    Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229CrossRefPubMedGoogle Scholar
  24. 24.
    Gan SK, Kriketos AD, Poynten AM et al (2003) Insulin action, regional fat, and myocyte lipid: altered relationships with increased adiposity. Obes Res 11:1295–1305CrossRefPubMedGoogle Scholar
  25. 25.
    Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287CrossRefPubMedGoogle Scholar
  26. 26.
    Wellen KE, Hotamisligil GS (2003) Obesityinduced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788PubMedGoogle Scholar
  27. 27.
    Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedGoogle Scholar
  28. 28.
    Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedGoogle Scholar
  29. 29.
    Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561CrossRefPubMedGoogle Scholar
  30. 30.
    Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24:278–301CrossRefPubMedGoogle Scholar
  31. 31.
    Moyle G (2007) Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr 45(Suppl 1):S19–26PubMedGoogle Scholar
  32. 32.
    Perret B, Ferrand C, Bonnet E et al (2003) Lipoprotein metabolism in HIV-positive patients. Eur J Med Res 8(Suppl II):6Google Scholar
  33. 33.
    Grinspoon SK (2005) Metabolic syndrome and cardiovascular disease in patients with human immunodeficiency virus. Am J Med 118(Suppl 2):23S–28SPubMedGoogle Scholar
  34. 34.
    Savès M, Raffi F, Capeau J et al (2002) Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis 34:1396–1405CrossRefPubMedGoogle Scholar
  35. 35.
    Noor MA, Flint OP, Maa J et al (2006) Effects of atazanavir/ritonavir and lopinavir/ritonavir on glucose uptake on insulin sensitivity: demonstrable differences in vitro and clinically. AIDS 20:1813–1821CrossRefPubMedGoogle Scholar
  36. 36.
    Van der Valk M, Kastelein JJ, Murphy RL et al (2001) Nevirapine-containing antiretroviral therapy in HIV-1 infected patients results in an antiatherogenic lipid profile. AIDS 15:2407–2414CrossRefPubMedGoogle Scholar
  37. 37.
    Carr A, Samaras K, Thorisdottir A et al (1999) Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 353:2093–2099CrossRefPubMedGoogle Scholar
  38. 38.
    Liang JS, Distler O, Cooper DA et al (2001) HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med 7:1327–1331CrossRefPubMedGoogle Scholar
  39. 39.
    Lenhard JM, Croom DK et al (2000) HIV protease inhibitors stimulate hepatic triglyceride synthesis. Arterioscler Thromb Vasc Biol 20:2625–2629PubMedGoogle Scholar
  40. 40.
    Riddle TM, Kuhel DG, Woollett LA et al (2001) HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem 276:37514–37519CrossRefPubMedGoogle Scholar
  41. 41.
    Bonnet E, Ruidavets JB, Tuech J et al (2001) Apoprotein c-III and E-containing lipoparticles are markedly increased in HIV-infected patients treated with protease inhibitors: association with the development of lipodystrophy. J Clin Endocrinol Metab 86:296–302CrossRefPubMedGoogle Scholar
  42. 42.
    Lihn AS, Richelsen B, Pedersen SB et al (2003) Increased expression of TNF-alpha, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am J Physiol Endocrinol Metab 285:E1072–1080PubMedGoogle Scholar
  43. 43.
    Vigouroux C, Maachi M, Nguyen TH et al (2003) Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 17:1503–1511CrossRefPubMedGoogle Scholar
  44. 44.
    Bastard JP, Pereira E, Reynes J et al (2007) Follow-up of lipodystrophy and metabolic alterations in the ANRS APROCO-COPILOTE studying HIV-infected patients initiated with protease inhibitors in 1997 and 1998: relation to adiponectin, leptin and triglycerides levels and to TNF polymorphisms. Antivir Ther L30, P–16 (abstract)Google Scholar
  45. 45.
    Ledergerber B, Furrer H, Rickenbach M et al (2007) Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV Cohort Study. Clin Infect Dis 45:111–119CrossRefPubMedGoogle Scholar
  46. 46.
    Brown TT, Cole SR, Li X et al (2005) Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med 1651179–1651184Google Scholar
  47. 47.
    Florescu D, Kotler DP (2007) Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther 12:149–162PubMedGoogle Scholar
  48. 48.
    Noor MA, Lo JC, Mulligan K et al (2001) Metabolic effects of indinavir in healthy HIV seronegative men. AIDS 15:F11–18CrossRefPubMedGoogle Scholar
  49. 49.
    Noor MA, Seneviratne T, Aweeka FT et al (2002) Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS 29:F1–8CrossRefGoogle Scholar
  50. 50.
    Bacchetti P, Gripshover B, Grunfeld C et al (2005) Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr 40:121–131CrossRefPubMedGoogle Scholar
  51. 51.
    Martin A, Smith DE, Carr A et al (2004) Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS 18:1029–1036CrossRefPubMedGoogle Scholar
  52. 52.
    Jemsek JG, Arathoon E, Arlotti M et al (2006) Body fat and other metabolic effects of atazanavir and efavirenz, each administered in combination with zidovudine plus lamivudine, in antiretroviral-naive HIV-infected patients. Clin Infect Dis 42:273–280CrossRefPubMedGoogle Scholar
  53. 53.
    Johnson M, Grinsztejn B, Rodriguez C et al (2006) 96-week comparison of once-daily atazanavir/ritonavir and twice-daily lopinavir/ritonavir in patients with multiple virologic failures. AIDS 20:711–718CrossRefPubMedGoogle Scholar
  54. 54.
    Fisac C, Fumero E, Crespo M et al (2005) Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS 19:917–925CrossRefPubMedGoogle Scholar
  55. 55.
    McComsey GA, Paulsen DM, Lonergan JT et al (2005) Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. AIDS 19:15–23CrossRefPubMedGoogle Scholar
  56. 56.
    Moyle GJ, Sabin CA, Cartledge J et al (2006) A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS 20:2043–2050CrossRefPubMedGoogle Scholar
  57. 57.
    Cherry CL, Lal L, Thompson KA et al (2005) Increased adipocyte apoptosis in lipoatrophy improves within 48 weeks of switching patient therapy from Stavudine to abacavir or zidovudine. J Acquir Immune Defic Syndr 38:263–267PubMedGoogle Scholar
  58. 58.
    Mallal SA, John M, Moore CB et al (2000) Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS 14:1309–1316CrossRefPubMedGoogle Scholar
  59. 59.
    Miller J, Carr A, Emery S et al (2003) HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med 4:293–301CrossRefPubMedGoogle Scholar
  60. 60.
    Gougeon M-L, Péenicaud L, Fromenty B et al (2004) Adipocytes targets and actors in the pathogenesis of HIV-associated lipodystrophy and metabolic alterations. Antivir Ther 9:161–177PubMedGoogle Scholar
  61. 61.
    Caron M, Auclair M, Vigouroux C et al (2001) The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadi-pocyte differentiation, and induces insulin resistance. Diabetes 50:1378–1388CrossRefPubMedGoogle Scholar
  62. 62.
    Caron M, Auclair M, Sterlingot H et al (2003) Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS 17:2437–2444CrossRefPubMedGoogle Scholar
  63. 63.
    Caron M, Auclair M, Donadille B et al (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ (in press)Google Scholar
  64. 64.
    Krimm I, Ostlund C, Gilquin B et al (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure (Camb) 10:811–823CrossRefGoogle Scholar
  65. 65.
    Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777CrossRefPubMedGoogle Scholar
  66. 66.
    Vigouroux C, Auclair M, Dubosclard E et al (2001) Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J Cell Sci 114:4459–4468PubMedGoogle Scholar
  67. 67.
    Jones SP, Janneh O, Back DJ et al (2005) Altered adipokine response in murine 3T3-F442A adipocytes treated with protease inhibitors and nucleoside reverse transcriptase inhibitors. Antivir Ther 10:207–213PubMedGoogle Scholar
  68. 68.
    Lagathu C, Bastard JP, Auclair M et al (2004) Antiretroviral drugs with adverse effects on adipocyte lipid metabolism and survival alter the expression and secretion of proinflammatory cytokines and adiponectin in vitro. Antivir Ther 9:911–920PubMedGoogle Scholar
  69. 69.
    Lagathu C, Eustace B, Prot M et al (2007) Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir Ther 12:489–500PubMedGoogle Scholar
  70. 70.
    Caron M, Auclair M, Lagathu C et al (2004) The HIV-1 nucleoside reverse transcriptase inhibitors stavudine and zidovudine alter adipocyte functions in vitro. AIDS 18:2127–2136CrossRefPubMedGoogle Scholar
  71. 71.
    Bastard JP, Caron M, Vidal H et al (2002) Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 359:1026–1031CrossRefPubMedGoogle Scholar
  72. 72.
    Domingo P, Matias-Guiu X, Pujol RM et al (1999) Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. AIDS 13:2261–2267CrossRefPubMedGoogle Scholar
  73. 73.
    Nolan D, Hammond E, Martin A et al (2003) Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS 17:1329–1338CrossRefPubMedGoogle Scholar
  74. 74.
    Lloreta J, Domingo P, Pujol RM et al (2002) Ultrastructural features of highly active antiretroviral therapy-associated partial lipodystrophy. Virchows Arch 441:599–604CrossRefPubMedGoogle Scholar
  75. 75.
    Jan V, Cervera P, Maachi M et al (2004) Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther 9:555–564PubMedGoogle Scholar
  76. 76.
    Sutinen J, Korsheninnikova E, Funahashi T et al (2003) Circulating concentration of adiponectin and its expression in subcutaneous adipose tissue in patients with highly active antiretroviral therapy-associated lipodystrophy. J Clin Endocrinol Metab 88:1907–1910CrossRefPubMedGoogle Scholar
  77. 77.
    Domingo P, Matias-Guiu X, Pujol RM et al (2001) Switching to nevirapine decreases insulin levels but does not improve subcutaneous adipocyte apoptosis in patients with highly active antiretroviral therapy-associated lipodystrophy. J Infect Dis 184:1197–1201CrossRefPubMedGoogle Scholar
  78. 78.
    Kim M et al (2007) A six-month interruption of antiretroviral therapy improves adipose tissue function in HIV-infected patients: the ANRS EP29 Lipostrop Study. Antivir Ther 12:1273–1283PubMedGoogle Scholar
  79. 79.
    Ledru E, Christeff N, Patey O et al (2000) Alteration of tumor necrosis factor-alpha T-cell homeostasis following potent antiretroviral therapy: contribution to the development of human immunodeficiency virus-associated lipodystrophy syndrome. Blood 95:3191–3198PubMedGoogle Scholar
  80. 80.
    Rietschel P, Hadigan C, Corcoran C et al (2001) Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J Clin Endocrinol Metab 86:504–510CrossRefPubMedGoogle Scholar
  81. 81.
    Lo JC, Mulligan K, Noor MA et al (2001) The effects of recombinant human growth hormone on body composition and glucose metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab 86:3480–3487CrossRefPubMedGoogle Scholar
  82. 82.
    Luzi L, Meneghini E, Oggionni S et al (2005) GH treatment reduces trunkal adiposity in HIV-infected patients with lipodystrophy: a randomized placebo-controlled study. Eur J Endocrinol 153:781–789CrossRefPubMedGoogle Scholar
  83. 83.
    Friis-MØller N, Reiss P, Sabin CA et al; DAD Study Group (2007) Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med 356:1723–1735CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • J. Capeau
    • 1
  • M. Caron
    • 2
  • F. Boccara
    • 3
  1. 1.INSERM U402, Faculté de Médecine Saint-Antoine, Département de BiochimieHôpital Tenon, Université Pierre et Marie CurieParisFrance
  2. 2.INSERM UMRS680Faculté de Médecine Saint-AntoineParisFrance
  3. 3.Département de CardiologieCentre Hospitalier Universitaire Saint-Antoine, Assistance Publique — Hôpitaux de Paris and Université Pierre et Marie CurieParisFrance

Personalised recommendations