Advertisement

IFAE 2007 pp 255-260 | Cite as

The Lyman-α Forest as a Probe of the Coldness of Dark Matter

  • Matteo Viel
Conference paper

Abstract

We present new constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-α flux power spectrum of 55 high-resolution Lyman-α forest spectra at 2.0 < z < 6.4 obtained with the HIRES spectrograph at the Keck telescope. From the HIRES spectra alone, we obtain a lower limit of m WDM ≳ 1.2 keV (2σ) if the WDM consists of early decoupled thermal relics and m WDM ≳ 5.6 keV (2σ) for sterile neutrinos. This result improves the previous constraints from high-resolution spectra at lower redshift by a factor two. Adding the Sloan Digital Sky Survey Lyman-α flux power spectrum at 2.2 < z < 4.2 from a large sample of low resolution spectra we get m WDM ≳ 4 keV and m WDM ≳ 28 keV (2σ) for thermal relics and sterile neutrinos, respectively. This is also a factor two improvement compared to previous combined analysis of high and low-resolution data. The small scale matter power spectrum probed by the high-resolution high-redshift HIRES data is instrumental for this improvement.

Keywords

Power Spectrum Sterile Neutrino High Redshift Dark Matter Particle Dwarf Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Seljak, A. Slosar and P. McDonald, JCAP, 0610, 14, (2006); M. Viel, M.G. Haehnelt and A. Lewis, MNRAS, 370, L51 (2006).ADSGoogle Scholar
  2. 2.
    P. Bode, J.P. Ostriker and N. Turok, Astrophys. J. 556, 93 (2001); B. Moore, T. Quinn, F. Governato, J. Stadel and G. Lake, Mon. Not. Roy. Astron. Soc. 310, 1147 (1999); V. Avila-Reese, P. Colin, O. Valenzuela, E. D’Onghia and C. Firmani, Astrophys. J. 559, 516 (2001).CrossRefADSGoogle Scholar
  3. 3.
    J. Wang and S.D.M. White, arXiv:astro-ph/0702575.Google Scholar
  4. 4.
    Strigari L.E., Kaplinghat M., Bullock J.S., Phys. Rev. D 75, 061303 (2007).CrossRefADSGoogle Scholar
  5. 5.
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Phys. Rev. D 71, 063534 (2005).CrossRefADSGoogle Scholar
  6. 6.
    U. Seljak, A. Makarov, P. McDonald and H. Trac, Phys. Rev. Lett. 97, 191303 (2006).CrossRefADSGoogle Scholar
  7. 7.
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto Phys. Rev. Lett. 97, 071301 (2006).CrossRefADSGoogle Scholar
  8. 8.
    A. Kusenko and G. Segre, Phys. Lett. B 396, 197 (1997); Phys. Rev. D 59, 061302(R) (1999); P.L. Biermann and A. Kusenko, Phys. Rev. Lett. 96, 091301 (2006); P.J.E. Peebles, Astrophys. J. 258, 415 (1982); K. Abazajian, Phys. Rev. D 73, 063513 (2006).CrossRefADSGoogle Scholar
  9. 9.
    A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Phys. Rev. D 74, 103506 (2006); A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov and I. Tkachev, Phys. Rev. Lett. 97, 0261302 (2006); S. Riemer-Sorensen, S.H. Hansen and K. Pedersen, Astrophys. J. 644, L33 (2006); C.R. Watson, J.F. Beacom, H. Yuksel and T.P. Walker, Phys. Rev. D 74, 033009 (2006); A. Boyarsky, J.W. den Herder, A. Neronov, O. Ruchayskiy, arXiv:astroph/ 0612219; K. Abazajian, G.M. Fuller and W.H. Tucker, Astrophys. J. 562, 593 (2001).CrossRefADSGoogle Scholar
  10. 10.
    L.E. Strigari, J.S. Bullock, M. Kaplinghat, A.V. Kravtsov, O.Y. Gnedin, K. Abazajian and A.A. Klypin, Astrophys. J. 652, 306 (2006).CrossRefADSGoogle Scholar
  11. 11.
    J. Simon, G. Meha, http://arxiv.org/abs/0706.0516.Google Scholar
  12. 12.
    G.D. Becker, M. Rauch, W.L.W. Sargent, Astrophys. J. 662, 72 (2007).CrossRefADSGoogle Scholar
  13. 13.
    P. McDonald et al., Astrophys. J. Suppl. 163, 80 (2006).CrossRefADSGoogle Scholar
  14. 14.
    T.S. Kim, M. Viel, M.G. Haehnelt, R.F. Carswell and S. Cristiani, MNRAS, 347, 355 (2004); R.A.C. Croft et al., Astrophys. J. 581, 20 (2002).CrossRefADSGoogle Scholar
  15. 15.
    M. Viel and M.G. Haehnelt, Mon. Not. Roy. Astron. Soc. 365, 231 (2006).CrossRefADSGoogle Scholar
  16. 16.
    V. Springel, Mon. Not. Roy. Astron. Soc. 364, 1105 (2005); M. Viel, M.G. Haehnelt and V. Springel, Mon. Not. Roy. Astron. Soc. 354, 684 (2004).CrossRefADSGoogle Scholar
  17. 17.
    A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002); CosmoMC home page: http://www.cosmologist.info.CrossRefADSGoogle Scholar
  18. 18.
    J.S. Bolton, M.G. Haehnelt, arXiv:astro-ph/0703306.Google Scholar
  19. 19.
    P. McDonald et al., Astrophys. J. 635, 761 (2005).CrossRefADSGoogle Scholar
  20. 20.
    A. Lidz et al., Astrophys. J. 638, 27 (2006).CrossRefADSGoogle Scholar
  21. 21.
    S. Colombi, S. Dodelson and L.M. Widrow, Astrophys. J. 458, 1 (1996); S.H. Hansen, J. Lesgourgues, S. Pastor and J. Silk, Mon. Not. Roy. Astron. Soc. 333, 544 (2002).CrossRefADSGoogle Scholar
  22. 22.
    K. Abazajian, Phys. Rev. D 73, 063506 (2006).CrossRefADSGoogle Scholar
  23. 23.
    K. Abazajian and S.M. Koushiappas, Phys. Rev. D 74, 023527 (2006).CrossRefADSGoogle Scholar
  24. 24.
    H. Yüksel, J.F. Beacom, C.R. Watson, 2007, arXiv:0706.4084v1.Google Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Matteo Viel
    • 1
    • 2
  1. 1.INAFOsservatorio Astronomico di TriesteTriesteItaly
  2. 2.INFNNational Institute for Nuclear PhysicsTriesteItaly

Personalised recommendations