Advertisement

IFAE 2007 pp 151-157 | Cite as

Charged Kaons and Vus at KLOE

Conference paper

Abstract

The DAΦNE e+e collider operates at the center of mass energy \( \sqrt s \) = 1020 MeV, the mass of the ø(1020)-meson. Since 2001, KLOE has collected an integrated luminosity of about 2.5 fb−1. Results presented below are based on ∼ 450 pb−1. The KLOE detector consists of a large cylindrical drift chamber surrounded by a lead/scintillating-fiber electromagnetic calorimeter. A superconducting coil around the detector provides a 0.52T magnetic field. The drift chamber [1], is 4m diameter and 3.3m long. The momentum resolution is σ(p T )/p T ∼ 0.4%. Two track vertices are reconstructed with a spatial resolution of ∼ 3mm. The calorimeter [2], composed of a barrel and two endcaps, covers 98% of the solid angle. Energy and time resolutions are σ(E)/E = 5.7%/\( \sqrt {E[GeV]} \) and σ(t) = 57ps/\( \sqrt {E[GeV]} \) ⊕ 100 ps. The KLOE trigger [3], uses calorimeter and drift chamber information. For the present analysis only the calorimeter triggers have been used.

Keywords

Drift Chamber Neutral Kaon Vector Form Factor Scalar Form Factor Charge Kaon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adinolfi et al., [KLOE Collaboration], The tracking detector of the KLOE experiment, Nucl. Instrum. Meth. A 488, 51 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    M. Adinolfi et al., [KLOE Collaboration], The KLOE electomagnetic calorimeter, Nucl. Instrum. Meth. A 482, 364 (2002).CrossRefADSGoogle Scholar
  3. 3.
    M. Adinolfi et al., [KLOE Collaboration], The trigger system of the KLOE experiment, Nucl. Instrum. Meth. A 492, 134 (2002).CrossRefADSGoogle Scholar
  4. 4.
    S. Eidelman et al., Particle Data Group, Phys. Lett. B 592, 1 (2004).ADSGoogle Scholar
  5. 5.
    F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 632, 76 (2006). [arXiv:hep-ex/0509045].CrossRefADSGoogle Scholar
  6. 6.
    PDG, W.-M. Yao et al., J. Phys. G 33, 1 (2006).CrossRefADSGoogle Scholar
  7. 7.
    KLOE coll., F. Ambrosino, et al., Phys. Lett. B 636, 173 (2006).CrossRefADSGoogle Scholar
  8. 8.
    KLOE coll., F. Ambrosino, et al., Phys. Lett. B 632, 43 (2006).CrossRefADSGoogle Scholar
  9. 9.
    KLOE coll., F. Ambrosino, et al., Phys. Lett. B 626, 15 (2005).CrossRefADSGoogle Scholar
  10. 10.
    KLOE coll., F. Ambrosino, et al., Phys. Lett. B 636, 166 (2006).CrossRefADSGoogle Scholar
  11. 11.
    H. Leutwyler and M. Roos, Z. Phys. C 25, 91 (1984).CrossRefADSGoogle Scholar
  12. 12.
    W.J. Marciano, Phys. Rev. Lett. 93, 231803 (2004) [arXiv:hep-ph/0402299].CrossRefADSGoogle Scholar
  13. 13.
    W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006) [arXiv:hepph/0510099].CrossRefADSGoogle Scholar
  14. 14.
    MILC coll., hep-lat/0609053Google Scholar
  15. 15.
    A. Sirlin, Nucl. Phys. B 196, 83 (1982).CrossRefADSGoogle Scholar
  16. 16.
    W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Personalised recommendations