Skip to main content

Pain in the Fetus

  • Chapter
Book cover Neonatal Pain

Abstract

All the recent data about the physiology of the fetus and its active role into the womb allow us to consider the fetus as a biological protagonist in the intrauterine environment. This capacity can be detected during both the embryonic and the fetal period. The pre-implantation blastocyst is biologically autonomous, because it can provide nutriments for itself during the trip from the oviduct to the site of implantation [1] and has an active role in the choice of the implantation site [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buhi WC, Alvarez IM, Koumba AJ (2000) Secreted proteins of the oviduct. Cell Tissues Organs 166:165–179

    Article  CAS  Google Scholar 

  2. Duc-Gorain P, Mignot TM, Bourgeois C, Ferre F (1999) Embryo-maternal interactions at the implantation site: a delicate equilibrium. Eur J Obstet Gynecol Reprod Biol 83:85–100

    Article  Google Scholar 

  3. Di Trapani, Orozco C, Cock I, Clarke F (1997) A re-examination of the association of “early pregnancy factor” activity with fractions of heterogeneous molecular weight distribution in pregnancy sera. Early Pregnancy 3:312–322

    PubMed  Google Scholar 

  4. Okado N, Kojima T (1984) Ontogeny of the central nervous system: neurogenesis, fibre connection, synaptogenesis and myelination in the spinal cord. In: Prechtl HFR (ed) Clinics in developmental medicine: continuity of neural functions from prenatal to postnatal life, vol 94. Lippincott, Philadelphia, pp 34–45

    Google Scholar 

  5. Kostovic I, Rakic P (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 4:25–42

    PubMed  CAS  Google Scholar 

  6. Krmpotic-Nemanic J, Kostovic I, Kelovic Z et al (1983) Development of the human fetal auditory cortex: growth of afferent fibres. Acta Anat (Basel) 116:69–73

    CAS  Google Scholar 

  7. Kostovic I, Goldman-Rakic PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447

    Article  PubMed  CAS  Google Scholar 

  8. Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    Article  PubMed  CAS  Google Scholar 

  9. Clancy B, Silva Filho M, Friedlander MJ (2001) Structure and projections of white matter neurons in the postnatal rat visual cortex J Comp Neurol 434:233–252

    Article  PubMed  CAS  Google Scholar 

  10. Charnay Y, Paulin C, Chayvialle JA, Dubois PM (1983) Distribution of substance P-like immunoreactivity in the spinal cord and dorsal root ganglia of the human foetus and infant. Neuroscience 10:41–55

    Article  PubMed  CAS  Google Scholar 

  11. Charnay Y, Paulin C, Dray F, Dubois PM (1984) Distribution of enkephalin in human fetus and infant spinal cord: an immunofluorescence study. J Comp Neurol 223: 415–423

    Article  PubMed  CAS  Google Scholar 

  12. Vanhatalo S, van Niuewenhuizen O (2000) Fetal pain? Brain Dev 22:145–150

    Article  PubMed  CAS  Google Scholar 

  13. Torres F, Anderson C (1985) The normal EEG of the human newborn. J Clin Neurophysiol 2:89–103

    Article  PubMed  CAS  Google Scholar 

  14. Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 231:840–843

    Article  PubMed  CAS  Google Scholar 

  15. Noia G, Arduini D, Rosati P et al (1985) Osservazioni preliminari sul behaviour fetale nelle gravidanze tossicodipendenti. In: Utopie e prospettive in ginecologia ed ostetricia. Monduzzi, Bologna, pp 349–357

    Google Scholar 

  16. Noia G, Caruso A, Mancuso S (1998) Le tecniche multiple invasive di diagnosi e terapie fetali e al storia naturale delle malformazioni. In: Le terapie fetali invasive, vol 4. Società Universo, Rome, pp 154–173

    Google Scholar 

  17. Giannakoulopoulos X, Sepulveda W, Kourtis P et al (1994) Fetal plasma cortisol and beta endorphin response to intrauterine needling. Lancet 344:77–81

    Article  PubMed  CAS  Google Scholar 

  18. Giannakoulopoulos X, Teixeira J, Fisk NM, Glover V (1999) Human fetal and maternal noradrenaline responses to invasive procedures. Pediatr Res 45:494–499

    Article  PubMed  CAS  Google Scholar 

  19. Smith RP, Gitau R, Glover V, Fisk NM (2000) Pain and stress in the human fetus. Eur J Obstet Gynecol Reprod Biol 92:161–165

    Article  PubMed  CAS  Google Scholar 

  20. Fisk NM, Gitau R, Teixeira JM et al (2001) Effect of direct fetal opioid analgesia on fetal hormonal and hemodynamic stress response to intrauterine needling. Anesthesiology 95:828–835

    Article  PubMed  CAS  Google Scholar 

  21. Texeira JM, Glover V, Fisk NM (1999) Acute cerebral redistribution in response to invasive procedures in the human fetus. Am J Obstet Gynecol 181:1018–1025

    Article  Google Scholar 

  22. Gitau R, Fisk NM, Teixeira JM et al (2001) Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J Clin Endocrinol Metab 86:104–109

    Article  PubMed  CAS  Google Scholar 

  23. Gitau R, Fisk NM, Glover V (2004) Human fetal and maternal corticotrophin releasing hormone responses to acute stress. Arch Dis Child Fetal Neonatal Ed 89:F29–F32

    Article  PubMed  CAS  Google Scholar 

  24. Noia G, Rosati P, Cicali B et al (1985) Urodinamica fetale: Studio ecografico preliminare in pazienti farmaco-dipendenti. Minerva Ginecologica, pp 681–684

    Google Scholar 

  25. Andrews K, Fitzgerald M (1994) The cutaneous withdrawal reflex in human neonates: sensitization, receptive fields, and the effects of contralateral stimulation. Pain 56:95–101

    Article  PubMed  CAS  Google Scholar 

  26. Spencer JA (1991) Predictive value of fetal heart rate acceleration at the time of fetal blood sampling in labour. J Perinat Med 19:207–215

    Article  PubMed  CAS  Google Scholar 

  27. Craig KD, Whitfield MF, Grunau RV et al (1993) Pain in the preterm neonate: behavioural and physiological indices. Pain 52:287–299

    Article  PubMed  CAS  Google Scholar 

  28. Xia C, Yang L, Zhang X (2002) Response to pain by different gestational age neonates J Huazhong Univ Sci Technolog Med Sci 22:84–86

    Article  PubMed  Google Scholar 

  29. Craig KD, Prkachin KM, Grunau RV (2001) Facial expression of pain. In: Turk DC, Melzack R (eds) Handbook of pain assessment, 2nd ed. Guilford Press, New York, pp 153–169

    Google Scholar 

  30. Craig KD, Hadjistavropoulos HD, Grunau RV, Whitfield MF (1994) A comparison of two measures of facial activity during pain in the newborn child. J Pediatr Psychol 19:305–318

    Article  PubMed  CAS  Google Scholar 

  31. Anand KJ, Phil D, Hickey PR (1987) Pain and its effects in the human neonate and fetus. N Engl J Med 317:1321–1329

    Article  PubMed  CAS  Google Scholar 

  32. Anand KJ, Barton BA, McIntosh N et al (1999) Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial. Neonatal outcome and prolonged analgesia in neonates. Arch Pediatr Adolesc Med 153: 331–338

    PubMed  CAS  Google Scholar 

  33. Vallee M, Maccari S, Dellu F et al (1999) Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci 11:2906–2916

    Article  PubMed  CAS  Google Scholar 

  34. Schneider ML, Coe CL, Lubach GR (1992) Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Dev Psychobiol 25:427–439

    Article  PubMed  CAS  Google Scholar 

  35. Clark AS, Wittner DJ, Abbott DH, Schneider ML (1994) Long-term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev Psychobiol 27:257–269

    Article  Google Scholar 

  36. Schneider ML, Roughton EC, Koehler AJ, Lubach GR (1999) Growth and development following prenatal stress exposure in primates: an examination of ontogenetic vulnerability. Child Dev 70:263–274

    Article  PubMed  CAS  Google Scholar 

  37. Reves TM, Coe CL (1997) Prenatal manipulations reduce the proinflammatory response to a cytokine challenge in juvenile monkeys. Brain Res 769:29–35

    Article  Google Scholar 

  38. Gorczynski RM (1992) Conditioned stress responses by pregnant and or lactating mice reduce immune responses of their offspring after weaning. Brain Behav Immun 6:87–95

    Article  PubMed  CAS  Google Scholar 

  39. Saravia-Fernandez F, Durant S, el Hasnaoui A et al (1996) Environmental and experimental procedures leading to variation in the incidence of diabetes in the nonobese diabetic (NOD) mouse. Autoimmunity 24:113–121

    Article  PubMed  CAS  Google Scholar 

  40. Barker DJ (1997) Fetal nutrition and cardiovascular disease in later life. Br Med Bull 53:96–108

    PubMed  CAS  Google Scholar 

  41. Johnson CC, Stevens BJ (1996) Experience in a neonatal intensive care unit affects pain response. Pediatrics 98:925–930

    Google Scholar 

  42. Taddio A Kats J, Ilersich AL, Koren G (1997) Effects of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 349:599–603

    Article  PubMed  CAS  Google Scholar 

  43. Andrews K, Fitzgerald M (2002) Wound sensitivity as a measure of analgesic effects following surgery in human neonates and infants. Pain 99:185–195

    Article  PubMed  Google Scholar 

  44. Lou HC, Hansen D, Nordentoft M et al (1994) Prenatal stressors of human life affect fetal brain development. Dev Med Child Neurol 36:826–832

    Article  PubMed  CAS  Google Scholar 

  45. Zappitelli M, Pinto T, Grizenko N (2001) Pre-, peri-, and postnatal trauma in subjects with attention-deficit hyperactivity disorder. Can J Psychol 46:542–548

    CAS  Google Scholar 

  46. Huttunen MO, Niskanen P (1978) Prenatal loss of father and psychiatric disorders. Arch Gen Psychiatry 35:429–431

    PubMed  CAS  Google Scholar 

  47. Bracha HS, Torrey EF, Gottesman II et al (1992) Am J Psychol 149:1355–1361

    CAS  Google Scholar 

  48. Davis JO, Phelps JA, Bracha HS (1995) Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophr Bull 21:357–366

    PubMed  CAS  Google Scholar 

  49. Cederholm M, Sjödén PO, Axelsson O (2001) Psychological distress before and after prenatal invasive karyotyping. Act Obstet Gynecol Scand 80:539–545

    Article  CAS  Google Scholar 

  50. Benatar D, Benatar M (2001) A pain in the fetus: toward ending confusion about fetal pain. Bioethics 15:57–76

    Article  PubMed  CAS  Google Scholar 

  51. Glover V, Fisk NM (1999) Fetal pain: implications for research and practice. Br J Obstet Gynaecol 106:881–886

    PubMed  CAS  Google Scholar 

  52. Lee SJ, Ralston HJ, Drey EA et al (2005) Fetal pain: a systematic multidisciplinary review of the evidence. JAMA 294:947–954

    Article  PubMed  CAS  Google Scholar 

  53. Derbyshire SWS (2006) Can the fetus feel pain? BMJ 332:909–912

    Article  PubMed  Google Scholar 

  54. Lecanuet JP, Schaal B (1996) Fetal sensory competencies. Eur J Obstet Gynecol Reprod Biol 68:1–23

    Article  PubMed  CAS  Google Scholar 

  55. Kiuchi M, Nagata N, Ikeno S, Terakawa N (2000) The relationship between the response to external light stimulation and behavioral states in the human fetus: how it differs from vibroacoustic stimulation. Early Hum Dev 58:153–165

    Article  PubMed  CAS  Google Scholar 

  56. Visser GH, Mulder EJ (1993) The effect of vibro-acoustic stimulation on fetal behavioral state organization. Am J Ind Med 23:531–539

    Article  PubMed  CAS  Google Scholar 

  57. Concise Oxford Dictionary of Current English, 9th ed (1995) Oxford, Clarendon Press

    Google Scholar 

  58. Austin J (2006) The problem of pain. Rapid Responses to Derbyshire SWG Can fetuses feel pain. BMJ 332:909–912

    Article  Google Scholar 

  59. Sites BD (2006) Fetal pain. JAMA 295:160

    Article  PubMed  CAS  Google Scholar 

  60. Valman HB, Pearson JF (1980) What the fetus feels. Br Med J 26:233–234

    Article  Google Scholar 

  61. Anonymous (2000) Prevention and management of pain and stress in the neonate. American Academy of Pediatrics. Committee on Fetus and Newborn. Committee on Drugs. Section on Anesthesiology. Section on Surgery. Canadian Paediatric Society. Fetus and Newborn Committee. Pediatrics 105:454–461

    Article  Google Scholar 

  62. Anand KJ, Costun V, Thrivikraman KV et al (1999) Long term behavioural effects of repetitive pain in neonatal rat pups. Phys Behav 66:627–637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Noia, G. et al. (2008). Pain in the Fetus. In: Buonocore, G., Bellieni, C.V. (eds) Neonatal Pain. Springer, Milano. https://doi.org/10.1007/978-88-470-0732-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0732-1_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0731-4

  • Online ISBN: 978-88-470-0732-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics