Neonatal Pain pp 123-130 | Cite as

Neonatal Stressors

  • M. Delivoria-Papadopoulos
  • O. P. Mishra


About 2.2 billion years ago, as the oxygen level of the planet was rising, a new sort of life form emerged, forged from a shaky alliance of what were to become the mitochondria and the remainder of the cell. The protomitochondria brought respiration to the partnership, and with it the power to kill every new cell by production of reactive oxygen species — a mechanism of cell death that still exists throughout the eukaryotes.


Programme Cell Death Hypoxic Group Allopurinol Treatment Neonatal Stressor Nuclear Enve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen J, Graham SH, Nakayama M et al (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 17:2–10PubMedCrossRefGoogle Scholar
  2. 2.
    Merry DE, Veis EDJ, Hickey WF, Korsmeyer SJ (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311PubMedGoogle Scholar
  3. 3.
    Chen J, Graham SH, Chan PH et al (1995) Bcl-2 is expressed in neurons that survive focal ischemia in rat. Neuroreport 6:394–398PubMedCrossRefGoogle Scholar
  4. 4.
    Jacobson MD, Raff MC (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374:814–816PubMedCrossRefGoogle Scholar
  5. 5.
    Martinou JC, Dubois-Dauphin M, Staple JR et al (1994) Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030PubMedCrossRefGoogle Scholar
  6. 6.
    Zhong LT, Sarafian T, Kane DJ et al (1993) Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci 90:4533–4537PubMedCrossRefGoogle Scholar
  7. 7.
    Hara A, Iwai T, Niwa M et al (1996) Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res 711:249–253PubMedCrossRefGoogle Scholar
  8. 8.
    Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenbaum DM, Michaelson M, Batter DK et al (1994) Evidence for hypoxia-induced, programmed cell death of culture neurons. Ann Neurol 36:864–870PubMedCrossRefGoogle Scholar
  10. 10.
    Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122–1126PubMedCrossRefGoogle Scholar
  11. 11.
    Golstein P (1997) Controlling cell death. Science 275:1081–1082PubMedCrossRefGoogle Scholar
  12. 12.
    Krajewski S, Mal JK, Krajewska M et al (1995) Upregulation of Bax protein levels in neurons following cerebral ischemia. J Neurosci 15:6364–6376PubMedGoogle Scholar
  13. 13.
    Gillardon F, Wickert H, Zimmerman M (1995) Up-regulation of Bax and down-regulation of Bcl-2 is associated with kainite-induced apoptosis in mouse brain. Neurosci Lett 192:85–88PubMedCrossRefGoogle Scholar
  14. 14.
    Gillardon F, Lenz C, Waschke KF et al (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol Brain Res 40:254–260PubMedCrossRefGoogle Scholar
  15. 15.
    Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619PubMedCrossRefGoogle Scholar
  16. 16.
    Bossenmeyer C, Chihab R, Muller S et al (1997) Differential expression of specific proteins associated with apoptosis (Bax) or cell survival (Bcl-2, HSP70, HSP105) after short and long-term hypoxia in cultured central neurons. Pediatr Res 41:41ACrossRefGoogle Scholar
  17. 17.
    Ravishankar S, Ashraf QM, Fritz K et al (2001) Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 901:23–29PubMedCrossRefGoogle Scholar
  18. 18.
    Marin MC, Fernandez A, Bick RJ et al (1996) Apoptosis suppression by Bcl-2 is correlated with regulation of nuclear and cytosolic Ca2+. Oncogene 12:2259–2266PubMedGoogle Scholar
  19. 19.
    Al-Mohanna FA, Caddy KWT, Boisover SR (1994) The nucleus is isolated from large cytosolic calcium ion changes. Nature 367:745–750PubMedCrossRefGoogle Scholar
  20. 20.
    Santella L, Carafoli E (1997) Calcium signaling in cell nucleus. FASEB J 11:1091–1109PubMedGoogle Scholar
  21. 21.
    Steinhardt RA, Alderton J (1988) Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature 332:364–366PubMedCrossRefGoogle Scholar
  22. 22.
    Tombes RM, Simerly C, Borisy GG, Schatten G (1992) Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte. J Cell Biol 117:799–811PubMedCrossRefGoogle Scholar
  23. 23.
    Mishra OP, Delivoria-Papadopoulos M (2002) Nitric oxide-mediated Ca++-influx in neuronal nuclei and cortical synaptosomes of normoxic and hypoxic newborn piglets. Neurosci Lett 318:93–97PubMedCrossRefGoogle Scholar
  24. 24.
    Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomemclature. Cell 87:171PubMedCrossRefGoogle Scholar
  25. 25.
    Donepudi M, Grutter MG (2002) Structure and zymogen activation of caspases. Biophys Chem 101-102:145–154PubMedCrossRefGoogle Scholar
  26. 26.
    Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9:3–5PubMedCrossRefGoogle Scholar
  27. 27.
    Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43PubMedCrossRefGoogle Scholar
  28. 28.
    Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774PubMedCrossRefGoogle Scholar
  29. 29.
    Rotonda J, Nicholson DW, Fazil KM et al (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3:619–625PubMedCrossRefGoogle Scholar
  30. 30.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  31. 31.
    Kumar S, Lavin MF (1996) The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ 3:255–267PubMedGoogle Scholar
  32. 32.
    Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306PubMedCrossRefGoogle Scholar
  33. 33.
    Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649–655PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16PubMedGoogle Scholar
  35. 35.
    Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245PubMedCrossRefGoogle Scholar
  36. 36.
    Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698PubMedCrossRefGoogle Scholar
  37. 37.
    Xue D, Shaham S, Horvitz HR (1996) The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10:1073–1083PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan J, Shaham S, Ledoux S et al (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652PubMedCrossRefGoogle Scholar
  39. 39.
    Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372PubMedCrossRefGoogle Scholar
  40. 40.
    Woo M, Hakem R, Soengas MS et al (1998) Essential contribution of caspase-3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819PubMedGoogle Scholar
  41. 41.
    Hakem R, Hakem A, Duncan GS, (1998) Differential requirement for caspase-9 inapoptotic pathways in vivo. Cell 94:339–352PubMedCrossRefGoogle Scholar
  42. 42.
    Kuida K, Haydar TF, Kuan C-Y et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9. Cell 94:325–337PubMedCrossRefGoogle Scholar
  43. 43.
    Bump NJ, Hackett M, Hugunin M et al (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein. Science 269:1885–1888PubMedCrossRefGoogle Scholar
  44. 44.
    Sugimoto A, Friesen PD, Rothman JH (1994) Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans. EMBO J 13:2023–2028PubMedGoogle Scholar
  45. 45.
    Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129PubMedGoogle Scholar
  46. 46.
    Beidler DR, Tewari M, Friesen PD et al (1995) The baculovirus p35 protein inhibits Fas-and tumor necrosis factor-induced apoptosis. J Biol Chem 270:16426–16528CrossRefGoogle Scholar
  47. 47.
    Datta R, Kojima H, Banach D et al (1997) Activation of a CrmA-insensitive, p35-sensitive pathway in ionizing radiation-induced apoptosis. J Biol Chem 272:1965–2196PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • M. Delivoria-Papadopoulos
    • 1
  • O. P. Mishra
    • 1
  1. 1.St. Christopher’s Hospital for ChildrenNeonatal Research Laboratory Drexel University College of MedicinePhiladelphiaUSA

Personalised recommendations