Advertisement

Econophysicists Collaboration Networks: Empirical Studies and Evolutionary Model

  • Menghui Li
  • Jinshan Wu
  • Ying Fan
  • Zengru Di
Part of the New Economic Windows book series (NEW)

Abstract

Scientific collaboration network gives a nice description for communications among scientists. In order to show the status of the research in Econophysics, we have collected papers in Econophysics and constructed a network of scientific communication to integrate idea transportation among econophysicists by collaboration, citation and personal discussion. Inspired by scientific collaboration networks, especially our empirical analysis of econophysicists network, an evolutionary model for weighted networks is proposed. The model shows the scale-free phenomena in degree and vertex weight distribution. The results of short term evolution are consistent well qualitatively with the empirical results.

Keywords

Weighted Network Collaboration Network Link Weight Vertex Weight Personal Discussion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman M.E.J. (2001) The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98: 404–409MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Newman M.E.J. (2001) Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E 64: 016131; Newman M.E.J.(2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E 64: 016132CrossRefADSGoogle Scholar
  3. 3.
    Barabási A.-L., Jeonga H., Neda Z., Ravasz E., Schubert A., Vicsek T.(2002) Evolution of the social network of scientific collaborations, Physica A 311: 590–614MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Jeong H., Néda Z. and Barabási A. L. (2003) Measuring preferential attachment in evolving networks, Europhys. Lett., 61(4): 567–572CrossRefADSGoogle Scholar
  5. 5.
    Barrat A., Barthélemy M., Pastor-Satorras R., Vespignani A. (2004) The architecture of complex weighted networks, Proc. Natl. Acad. Sci. 101(11): 3747CrossRefADSGoogle Scholar
  6. 6.
    Li W., Cai X.(2004) Statistical analysis of airport network of China, Phys. Rev. E 69: 046106CrossRefADSGoogle Scholar
  7. 7.
    Bagler G. (2004) Analysis of the Airport Network of India as a complex weighted network, arXiv:cond-mat/0409773Google Scholar
  8. 8.
    Almaas E., Kovacs B., Vicsek T., Barabási A.-L.(2004) Global organization of metabolic fluxes in the bacterium Escherichia coli, Nature 427: 839CrossRefADSGoogle Scholar
  9. 9.
    Yook S.H., Jeong H., Barabási A.-L. (2001) Weighted evolving networks, Phys. Rev. Lett. 86: 5835–5838CrossRefADSGoogle Scholar
  10. 10.
    Zheng D., Trimper S., Zheng B., Hui P.M. (2003) Weighted scale-free networks with stochastic weight assignments, Phys. Rev. E 67: 040102CrossRefADSGoogle Scholar
  11. 11.
    Antal T., Krapivsky P.L., Weight-driven growing networks, Phys. Rev. E 71: 026103Google Scholar
  12. 12.
    Goh K-I, Noh J D, Kahng B and Kim D (2005) Load distribution in weighted complex networks, Phys. Rev. E 72: 017102CrossRefADSGoogle Scholar
  13. 13.
    Park K., Lai Y.-C., Ye N. (2004) Characterization of weighted complex networks, Phys. Rev. E 70: 026109CrossRefADSGoogle Scholar
  14. 14.
    Barrat A, Barthélemy M and Vespignani A (2004) Weighted Evolving Networks: Coupling Topology and Weight Dynamics, Phys. Rev. Lett. 92: 228701CrossRefADSGoogle Scholar
  15. 15.
    Bianconi G (2005) Emergence of weight-topology correlations in complex scale-free networks, Europhysics letters 71: 1029–1035CrossRefADSGoogle Scholar
  16. 16.
    Dorogovtsev S N and Mendes J F F (2004) Minimal models of weighted scalefree networks, arXiv: cond-mat/0408343Google Scholar
  17. 17.
    Wang W., Wang B., Hu B., Yan G., Ou Q.(2005) General dynamics of topology and traffic on weighted technological networks, Phys. Rev. Lett. 94: 188702CrossRefADSGoogle Scholar
  18. 18.
    Fan Y., Li M., Chen J., Gao L., Di Z., Wu J. (2004) Netwok of econophysicists: a weighted network to investigate the development of ecnophysics, International Journal of Modern Physics B Vol. 18, Nos. 17–19: 2505–2511; Li M., Fan Y., Chen J., Gao L., Di Z., Wu J. (2005) Weighted networks of scientific communication: the measurement and topological role of weight, Physica A 350: 643–656CrossRefADSGoogle Scholar
  19. 19.
    Girvan M. and Newman M. E. J. (2002) Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99: 7821MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Zhang P., Li M., Wu J., Di Z., Fan Y. (2006) The analysis and dissimilarity comparison of community structure, Physica A 367: 577–585CrossRefADSGoogle Scholar
  21. 21.
    Li M., Wang D., Fan Y., Di Z. and Wu J. (2006) Modelling weighted networks using connection count, New Journal of Physics 8: 72; Li M., Wu J., Wang D., Zhou T., Di Z., Fan Y. (2007) Evolving model of weighted networks inspired by scientific collaboration networks, Physica A 375: 355–364CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Menghui Li
    • 1
  • Jinshan Wu
    • 2
  • Ying Fan
    • 1
  • Zengru Di
    • 1
  1. 1.Department of Systems Science, School of ManagementBeijing Normal UniversityBeijingP.R.China
  2. 2.Department of Physics & AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations