Skip to main content

Il versante sensorimotorio dell’empatia per il dolore

  • Chapter
  • 717 Accesses

Estratto

In questo capitolo ci occupiamo dei fenomeni e dei meccanismi neurali alla base della capacità umana di empatizzare con le azioni, le emozioni e le sensazioni altrui, e in particolare dell’attività neurale indotta dall’osservare e immaginare il dolore in un’altra persona. Mostreremo che la rappresentazione del dolore altrui determina l’attivazione di strutture neurali simili a quelle attivate durante l’esperienza personale del dolore, e che nell’empatia per il dolore possono essere utilizzate le strutture neurali coinvolte nel processamento sia emozionale che sensorimotorio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Fernandez E, Turk DC (1992) Sensory and affective components of pain: separation and synthesis. Psychol Bull 112:205–217

    Article  PubMed  CAS  Google Scholar 

  2. Melzack R, Casey KL (1968) Sensory, motivational and central control determinants of pain: a new conceptual model. In: Kenshalo DR (ed) The skin senses. Thomas, Springfield, IL, pp 423–443

    Google Scholar 

  3. Price DD, Harkins SW, Baker C (1987) Sensory-affective relationships among different types of clinical and experimental pain. Pain 28:297–308

    Article  PubMed  CAS  Google Scholar 

  4. International Association for the Study of Pain Task Force on Taxonomy (1994) Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. IASP Press, Seattle, WA

    Google Scholar 

  5. Farina S, Tinazzi M, Le Pera D, Valeriani M (2003) Pain-related modulation of the human motor cortex. Neurol Res 25:130–142

    Article  PubMed  Google Scholar 

  6. Ingvar M (1999) Pain and functional imaging. Philos Trans R Soc Lond Biol 354:1347–1358

    Article  PubMed  CAS  Google Scholar 

  7. Rainville P (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12:195–204

    Article  PubMed  CAS  Google Scholar 

  8. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain: a review and meta-analysis. Neurophysiol Clin 30:263–288

    Article  PubMed  CAS  Google Scholar 

  9. Derbyshire SWG (2000) Exploring the pain neuromatrix. Curr Rev Pain 6:467–477

    Google Scholar 

  10. Lipps T (1903) Einfühlung, innere Nachahmung und Organenempfindung. Arch Gesamte Psychol 1:465–519

    Google Scholar 

  11. Beres D, Arlow JA (1974) Fantasy and identification in empathy. Psychoanal Q 43:26–50

    PubMed  CAS  Google Scholar 

  12. Basch MF (1983) Empathic understanding: a review of the concept and some theoretical considerations. J Am Psychoanal Assoc 31:101–126

    Article  PubMed  CAS  Google Scholar 

  13. Bohart A, Greenberg LS (1997) Empathy reconsidered. American Psychological Association, Washington, DC

    Google Scholar 

  14. Freud S (1905) Il motto di spirito e la sua relazione con l’inconscio. OSF 5

    Google Scholar 

  15. Kohut H (1959) Introspection, empathy, and psychoanalysis: an examination of the relationship between mode of observation and theory. In: Ornstein PH (ed) The search for the self, vol 1. International University Press, New York, pp 205–232

    Google Scholar 

  16. Kohut H (1984) How does analysis cure? University of Chicago Press, Chicago

    Google Scholar 

  17. Goldman AI (1992) In defense of the simulation theory. Mind Lang 7:104–119

    Google Scholar 

  18. Gordon RM (1986) Folk psychology as simulation. Mind Lang 1:158–171

    Google Scholar 

  19. Gordon RM (1992) The simulation theory: objections and misconceptions. Mind Lang 7:11–34

    Google Scholar 

  20. Carruthers P, Smith PK (1996) Theories of theories of mind. Cambridge University Press, Cambridge, UK

    Google Scholar 

  21. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mindreading. Trends Cogn Sci 12:493–501

    Article  Google Scholar 

  22. Gallese V (2001) The’ shared manifold’ hypothesis: from mirror neurons to empathy. J Consc Studies 8:33–50

    Google Scholar 

  23. Gallese V (2003) The manifold nature of interpersonal relations: the quest for a common mechanism. Philos Trans R Soc Lond Biol 358:517–528

    Article  PubMed  Google Scholar 

  24. Preston SD, de Waal FBM (2002) Empathy: its ultimate and proximate bases. Behav Brain Sci 25:1–71

    Article  PubMed  Google Scholar 

  25. Adolphs R (2003) Cognitive neuroscience of human social behaviour. Nat Rev Neurosci 4:165–178

    Article  PubMed  CAS  Google Scholar 

  26. Gallese V, Keyser C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8:396–403

    Article  PubMed  Google Scholar 

  27. Decety J, Jackson PL (2004) The functional architecture of human empathy. Behav Cogn Neurosci Rev 3:71–100

    Article  PubMed  Google Scholar 

  28. Friedman DP, Murray EA (1986) Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 252:348–374

    Article  PubMed  CAS  Google Scholar 

  29. Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237

    PubMed  CAS  Google Scholar 

  30. Shi T, Apkarian AV (1995) Morphology of thalamocortical neurons projecting to the primary somatosensory cortex and their relationship to spinothalamic terminals in the squirrel monkey. J Comp Neurol 361:1–24

    Article  PubMed  CAS  Google Scholar 

  31. Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50:1479–1496

    PubMed  Google Scholar 

  32. Chudler EH, Anton F, Dubner R, Kenshalo DR Jr (1990) Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63:559–569

    PubMed  CAS  Google Scholar 

  33. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  PubMed  CAS  Google Scholar 

  34. Dong WK, Chudler EH, Sugiyama K et al (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72:542–564

    PubMed  CAS  Google Scholar 

  35. Andersson JL, Lilja A, Hartvig P et al (1997) Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp Brain Res 117:192–199

    Article  PubMed  CAS  Google Scholar 

  36. Porro CA, Cettolo V, Francescato MP, Baraldi P (1998) Temporal and intensity coding of pain in human cortex. J Neurophysiol 80:3312–3320

    PubMed  CAS  Google Scholar 

  37. Bushnell MC, Duncan GH, Hofbauer RK et al (1999) Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA 96:7705–7709

    Article  PubMed  CAS  Google Scholar 

  38. Hofbauer RK, Rainville P, Duncan GH, Bushnell MC (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86:402–411

    PubMed  CAS  Google Scholar 

  39. Bingel U, Lorenz J, Glauche V et al (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 23:224–232

    Article  PubMed  CAS  Google Scholar 

  40. Greenspan JD, Lee RR, Lenz FA (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81:273–282

    Article  PubMed  CAS  Google Scholar 

  41. Ploner M, Freund HJ, Schnitzler A (1999) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81:211–214

    Article  PubMed  CAS  Google Scholar 

  42. Coghill RC, Talbot JD, Evans AC et al (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14:4095–4108

    PubMed  CAS  Google Scholar 

  43. Craig AD, Reiman EM, Evans AC, Bushnell MC (1996) Functional imaging of an illusion of pain. Nature 384:258–260

    Article  PubMed  CAS  Google Scholar 

  44. Davis KD, Taylor SJ, Crawley AP et al (1997) Functional MRI of pain-and attention related activations in the human cingulate cortex. J Neurophysiol 77:3370–3380

    PubMed  CAS  Google Scholar 

  45. Jones AK, Brown WD, Friston KJ et al (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 244:39–44

    Article  CAS  Google Scholar 

  46. Ploghaus A, Tracey I, Gati JS et al (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981

    Article  PubMed  CAS  Google Scholar 

  47. Talbot JD, Marrett S, Evans AC et al (1991) Multiple representations of pain in human cerebral cortex. Science 251:1355–1358

    Article  PubMed  CAS  Google Scholar 

  48. Vogt BA, Derbyshire S, Jones AK (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8:1461–1473

    Article  PubMed  CAS  Google Scholar 

  49. Rainville P, Duncan GH, Price DD et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    Article  PubMed  CAS  Google Scholar 

  50. Singer T, Seymour B, O’Doherty J et al (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    Article  PubMed  CAS  Google Scholar 

  51. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–743

    Google Scholar 

  52. MacLean PD (1949) Psychosomatic disease and the “visceral brain”: recent developments bearing on the Papez theory of emotion. Psychosom Med 11:338–353

    PubMed  CAS  Google Scholar 

  53. Apkarian AV, Shi T (1998) Thalamocortical connections of the cingulate and insula in relation to nociceptive inputs to the cortex. In: Ayrapetyan SN, Apkarian AV (eds) Pain mechanisms and management. IOS, Washington, DC, pp 212–220

    Google Scholar 

  54. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30

    Article  PubMed  CAS  Google Scholar 

  55. Hutchison WD, Davis KD, Lozano AM et al (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405

    Article  PubMed  CAS  Google Scholar 

  56. Lenz FA, Rios M, Zirh A et al (1998) Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79:2231–2234

    PubMed  CAS  Google Scholar 

  57. Koyama T, Tanaka YZ, Mikami A (1998) Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport 9:2663–2667

    Article  PubMed  CAS  Google Scholar 

  58. Sikes RW, Vogt BA (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68:1720–1732

    PubMed  CAS  Google Scholar 

  59. Tolle TR, Kaufmann T, Siessmeier T et al (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47

    Article  PubMed  CAS  Google Scholar 

  60. Lieberman MD, Jarcho JM, Berman S et al. (2004) The neural correlates of placebo effects: a disruption account. Neuroimage 22:447–455

    Article  PubMed  Google Scholar 

  61. Coghill RC, McHaffie JG, Yen YF (2003) Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci USA 100:8538–8542

    Article  PubMed  CAS  Google Scholar 

  62. Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10

    PubMed  CAS  Google Scholar 

  63. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244

    Article  PubMed  CAS  Google Scholar 

  64. Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    Article  PubMed  CAS  Google Scholar 

  65. Critchley HD, Wiens S, Rotshtein P et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195

    Article  PubMed  CAS  Google Scholar 

  66. Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24:41–49

    Article  PubMed  CAS  Google Scholar 

  67. Flor H (2002) Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 1:182–189

    Article  PubMed  Google Scholar 

  68. Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York

    Google Scholar 

  69. Eisenberger NI, Lieberman MD (2004) Why rejection hurts: a common neural alarm system for physical and social pain. Trends Cogn Sci 8:294–300

    Article  PubMed  Google Scholar 

  70. Eisenberger NI, Lieberman MD, Williams KD (2003) Does rejection hurt? An fMRI study of social exclusion. Science 302:290–292

    Article  PubMed  CAS  Google Scholar 

  71. Osaka N, Osaka M, Morishita M et al (2004) A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study. Behav Brain Res 153:123–127

    Article  PubMed  Google Scholar 

  72. Descartes R (1972) Traité de l’homme. In: Hall TS (trans) Treatise of man, Harvard University Press, Cambridge, MA

    Google Scholar 

  73. Wittgenstein L (1963) Philosophical Investigations. Blackwell, Oxford, UK [trad. it.: Ricerche filosofiche. Einaudi, Torino, 1967]

    Google Scholar 

  74. Inghilleri M, Cruccu G, Argenta M, Polidori L, Manfredi M (1997) Silent period in upper limb muscles after noxious cutaneous stimulation in man. Electroencephalogr Clin Neurophysiol 105:109–115

    Article  PubMed  CAS  Google Scholar 

  75. Williams AC (2002) Facial expression of pain: an evolutionary account. Behav Brain Sci 25:439–488

    Article  PubMed  Google Scholar 

  76. Lundt JP, Stholer CS, Widmer CG (1993) The relationship between pain and muscle activity in fibromyalgia and similar conditions. In: Vaeroy H, Merskey H (eds) Progress in fibromyalgia and myofascial pain. Elsevier, Amsterdam, pp 311–327

    Google Scholar 

  77. Schwoebel J, Friedman R, Duda N, Coslett HB (2001) Pain and the body schema: evidence for peripheral effects on mental representations of movement. Brain 124:2098–2104

    Article  PubMed  CAS  Google Scholar 

  78. Schwoebel J, Coslett HB, Bradt J et al (2002) Pain and the body schema: effects of pain severity on mental representation of movement. Neurology 59:775–777

    PubMed  CAS  Google Scholar 

  79. Tsubokawa T, Katayama Y, Yamamoto T et al (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir 52:137–139

    CAS  Google Scholar 

  80. Saitoh Y, Shibata M, Sanada Y, Mashimo T (1999) Motor cortex stimulation for phantom limb pain. Lancet 353, 212

    Article  PubMed  CAS  Google Scholar 

  81. Drouot X, Nguyen JP, Peschanski M, Lefaucheur J-P (2002) The antalgic efficacy of chronic motor cortex stimulation is related to sensory changes in the painful zone. Brain 125:1660–1664

    Article  PubMed  Google Scholar 

  82. Lefaucheur JP, Drouot X, Nguyen JP (2001) Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex. Neurophysiol Clin 31:247–252

    Article  PubMed  CAS  Google Scholar 

  83. Flor H, Elbert T, Knecht S et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    Article  PubMed  CAS  Google Scholar 

  84. Casey KL, Minoshima S, Morrow TJ, Koeppe RA (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76:571–81

    PubMed  CAS  Google Scholar 

  85. Wager TD, Rilling JK, Smith EE et al (2004) Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303:1162–1167

    Article  PubMed  CAS  Google Scholar 

  86. Porro CA, Cettolo V, Francescato MP, Baraldi P (2003) Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage 19:1738–1747

    Article  PubMed  Google Scholar 

  87. Ploghaus A, Becerra L, Borras C, Borsook D (2003) Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cogn Sci 7:197–200

    Article  PubMed  Google Scholar 

  88. Farina S, Valeriani M, Rosso T et al (2001) Transient inhibition of the human motor cortex by capsaicin-induced pain: a study with transcranial magnetic stimulation. Neurosci Lett 314:97–101

    Article  PubMed  CAS  Google Scholar 

  89. Le Pera D, Graven-Nielsen T, Valeriani M et al (2001) Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin Neurophysiol 112:1633–1641

    Article  PubMed  Google Scholar 

  90. Svensson P, Miles TS, McKay D, Ridding MC (2003) Suppression of motor evoked potentials in a hand muscle following prolonged painful stimulation. Eur J Pain 7:55–62

    Article  PubMed  Google Scholar 

  91. Urban PP, Solinski M, Best C et al (2004) Different short-term modulation of cortical motor output to distal and proximal upper-limb muscles during painful sensory nerve stimulation. Muscle Nerve 29:663–669

    Article  PubMed  CAS  Google Scholar 

  92. Georgopoulos AP (2000) Neural aspects of cognitive motor control. Curr Opin Neurobiol 10:238–241

    Article  PubMed  CAS  Google Scholar 

  93. Jeannerod M (1997) The cognitive neuroscience of action. Blackwell, Oxford, UK

    Google Scholar 

  94. Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundation of imagery. Nat Rev Neurosci 2:635–642

    Article  PubMed  CAS  Google Scholar 

  95. Di Pellegrino G, Fadiga L, Fogassi L et al (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    Article  PubMed  Google Scholar 

  96. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  97. Fogassi L, Ferrari PF, Gesierich B et al (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  PubMed  CAS  Google Scholar 

  98. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611

    PubMed  CAS  Google Scholar 

  99. Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ action. Curr Opin Neurobiol 15:213–218

    Article  PubMed  CAS  Google Scholar 

  100. Brass M, Bekkering H, Prinz W (2001) Movement observation affects movement execution in a simple response task. Acta Psychol 106:3–22

    Article  CAS  Google Scholar 

  101. Craighero L, Bello A, Fadiga L, Rizzolatti G (2002) Hand action preparation influences the responses to hand pictures. Neuropsychologia 40:492–502

    Article  PubMed  Google Scholar 

  102. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representation in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:103–111

    Article  PubMed  CAS  Google Scholar 

  103. Rizzolatti G, Fadiga L, Matelli M et al (1996) Localization of grasp representation in humans by PET. 1. Observation versus execution. Exp Brain Res 111:246–252

    Article  PubMed  CAS  Google Scholar 

  104. Grèzes J, Costes N, Decety J (1998) Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cogn Neuropsychol 15:553–582

    Article  Google Scholar 

  105. Grèzes J, Costes N, Decety J (1999) The effects of learning and intention on the neural network involved in the perception of meaningless actions. Brain 122:1875–1887

    Article  PubMed  Google Scholar 

  106. Hari R, Forss N, Avikainen S et al (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065

    Article  PubMed  CAS  Google Scholar 

  107. Iacoboni M, Woods RP, Brass M et al (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    Article  PubMed  CAS  Google Scholar 

  108. Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842

    Article  PubMed  CAS  Google Scholar 

  109. Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12:1–19

    Article  PubMed  Google Scholar 

  110. Calvo-Merino B, Glaser DE, Grèzes J et al (2005) Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex 15:1243–1249

    Article  PubMed  CAS  Google Scholar 

  111. Costantini M, Galati G, Ferretti A et al (2005) Neural systems underlying observation of humanly impossible movements: an fMRI study. Cereb Cortex 15:1761–1767

    Article  PubMed  Google Scholar 

  112. Buccino G, Binkofski F, Fink GR et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404

    Article  PubMed  CAS  Google Scholar 

  113. Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–245

    Article  Google Scholar 

  114. Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109

    Article  PubMed  CAS  Google Scholar 

  115. Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178

    Article  PubMed  Google Scholar 

  116. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141

    Article  CAS  Google Scholar 

  117. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  PubMed  CAS  Google Scholar 

  118. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  119. Blakemore SJ, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2:561–567

    PubMed  CAS  Google Scholar 

  120. Grèzes J, Frith CD, Passingham RE (2004) Inferring false beliefs from the actions of oneself and others: an fMRI study. Neuroimage 21:744–750

    Article  PubMed  Google Scholar 

  121. Iacoboni M, Molnar-Szakacs I, Gallese V et al (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3:529–535

    Article  CAS  Google Scholar 

  122. Thomson E (2001) Empathy and consciousness. J Consc Stud 8:1–32

    Google Scholar 

  123. Meltzoff AN, Decety J (2003) What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philos Trans R Soc Lond B Biol Sci 358:491–500

    Article  PubMed  Google Scholar 

  124. Decety J, Sommerville JA (2003) Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn Sci 7:527–533

    Article  PubMed  Google Scholar 

  125. Morrison I, Lloyd D, di Pellegrino G, Roberts N (2004) Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 4:270–278

    PubMed  Google Scholar 

  126. Carr L, Iacoboni M, Dubeau MC et al (2003) Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proc Natl Acad Sci USA 100:5497–5502

    Article  PubMed  CAS  Google Scholar 

  127. Wicker B, Keysers C, Plailly J et al (2003) Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40:655–664

    Article  PubMed  CAS  Google Scholar 

  128. Leslie KR, Johnson-Frey SH, Grafton ST (2004) Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage 21:601–607

    Article  PubMed  Google Scholar 

  129. Hennenlotter A, Schroeder U, Erhard P et al (2005) A common neural basis for receptive and expressive communication of pleasant facial affect. Neuroimage 26:581–591

    Article  PubMed  Google Scholar 

  130. Keysers C, Wicker B, Gazzola V et al (2004) A touching sight: SII/PV activation during the observation and experience of touch. Neuron 42:335–346

    Article  PubMed  CAS  Google Scholar 

  131. Blakemore SJ, Bristow D, Bird G et al, Frith C, Ward J (2005) Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain 128:1571–1583

    Article  PubMed  Google Scholar 

  132. Jackson PL, Meltzoff AN, Decety J (2005) How do we perceive the pain of others? A window into the neural processes involved in empathy. Neuroimage 24:771–779

    Article  PubMed  Google Scholar 

  133. Avenanti A, Bueti D, Galati G, Aglioti SM (2005) Transcranial magnetic stimulation highlights the sensorimotor side of empathy for pain. Nat Neurosci 8:955–960

    PubMed  CAS  Google Scholar 

  134. Botvinick M, Jha AP, Bylsma LM et al, Fabian SA, Solomon PE, Prkachin KM (2005) Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage 25:312–319

    Article  PubMed  Google Scholar 

  135. Dimberg U, Thunberg M, Elmehed K (2000) Unconscious facial reactions to emotional facial expressions. Psychol Sci 11:86–89

    Article  PubMed  CAS  Google Scholar 

  136. Wallbott HG (1991) Recognition of emotion from facial expression via imitation? Some indirect evidence for an old theory. Br J Soc Psychol 30:207–219

    PubMed  Google Scholar 

  137. Ekman P, Davidson RJ (1993) Voluntary smiling changes regional brain activity. Psychol Sci 4:342–345

    Article  Google Scholar 

  138. Adolphs R, Damasio H, Tranel D (2002) Neural systems for recognition of emotional prosody: a 3-D lesion study. Emotion 2:23–51

    Article  PubMed  Google Scholar 

  139. Adolphs R, Damasio H, Tranel D et al (2000) A role for the somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J Neurosci 20:2683–2690

    PubMed  CAS  Google Scholar 

  140. Pourtois G, Sander D, Andres M et al (2004) Dissociable roles of the human somatosensory and superior temporal cortices for processing social face signals. Eur J Neurosci 20:3507–3515

    Article  PubMed  Google Scholar 

  141. Winston JS, O’Doherty J, Dolan RJ (2003) Common and distinct neural responses during direct and incidental processing of multiple facial emotions. Neuroimage 20:84–97

    Article  PubMed  CAS  Google Scholar 

  142. Adolphs R (2002) Neural systems for recognizing emotion. Curr Opin Neurobiol 12:169–177

    Article  PubMed  CAS  Google Scholar 

  143. Calder AJ, Keane J, Manes F et al (2000) Impaired recognition and experience of disgust following brain injury. Nat Neurosci 3:1077–1078

    Article  PubMed  CAS  Google Scholar 

  144. Phillips ML, Young AW, Senior C et al (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498

    Article  PubMed  CAS  Google Scholar 

  145. Bradshaw JL, Mattingley JB (2001) Allodynia: a sensory analogue of motor mirror neurons in a hyperaesthetic patient reporting instantaneous discomfort to another’s perceived sudden minor injury? J Neurol Neurosurg Psychiatry 70:135–136

    Article  PubMed  CAS  Google Scholar 

  146. Peyron R, Garcia-Larrea L, Gregoire MC et al (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122:1765–1780

    Article  PubMed  Google Scholar 

  147. Sawamoto N, Honda M, Okada T et al (2000) Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic imaging study. J Neurosci 20:7438–7444

    PubMed  CAS  Google Scholar 

  148. Porro CA, Baraldi P, Pagnoni G et al (2002) Does anticipation of pain affect cortical nociceptive systems? J Neurosci 22:3206–3214

    PubMed  CAS  Google Scholar 

  149. Singer T, Frith C (2005) The painful side of empathy. Nat Neurosci 8:845–846

    Article  PubMed  CAS  Google Scholar 

  150. Avenanti A, Minio Paluello I, Bufalari I, Aglioti SM (2006) Stimulus-driven modulation of motor-evoked potentials during observation of others’ pain. Neuroimage 32:316–324

    Google Scholar 

  151. Minio Paluello I, Avenanti A, Aglioti SM (2006) Left hemisphere dominance in reading the sensory qualities of others’ pain? Social Neuroscience 1:320–333

    Google Scholar 

  152. Fecteau S, Pascual-Leone A, Theoret H (2006) Empathy for pain: Anticipation vs. observation. Neuroimage 31:S156

    Article  Google Scholar 

  153. Bufalari I, Aprile T, Avenanti A, Di Russo F, Aglioti SM (2007) Empathy for pain and touch in the human somatosensory cortex. Cerebr Cortex [Jan 6 2007 Epub ahead of print]

    Google Scholar 

  154. Valeriani M, Betti V, Le Pera D, Restuccia D, De Armas L, Miliucci R, Avenanti A, Aglioti SM (2006) The pain of a model in the pain system of an onlooker: a laserevoked potentials study of empathy for pain [sottomesso]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Avenanti, A., Aglioti, S.M. (2007). Il versante sensorimotorio dell’empatia per il dolore. In: Mancia, M. (eds) Psicoanalisi e Neuroscienze. Springer, Milano. https://doi.org/10.1007/978-88-470-0659-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0659-1_10

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0658-4

  • Online ISBN: 978-88-470-0659-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics