The Role of Fetal Neurosurgery in Spina Bifida

  • Sergio Cavalheiro
  • Wagner J. Hisaba
  • Antonio F. Moron
  • Carlos G. Almodin


Myelomeningocele (MMC) is a nonlethal form of neural tube defect (NTD) that results from failure of the neural tube to fuse during early embryogenesis. The lesion is characterized by protrusion of the meninges through a midline bony defect of the spine, a sac containing cerebrospinal fluid and dysplastic neural tissue not covered by skin. MMC represents an important congenital defect of the brain and spinal cord that affects approximately one in 2,000 live births and about 23% of pregnancies that end in elective abortion [1, 2]. MMC leads to lifelong and significant physical disabilities including paraplegia, hydrocephalus, bladder and fecal incontinence, sexual dysfunction, skeletal deformation and mental impairment [3]. The mortality rate, which can be as high as 47% on long-term followup, is principally attributable to the hindbrain herniation observed in Chiari malformation and to the renal failure observed in neurogenic bladder dysfunction [4].


Amniotic Fluid Spina Bifida Neural Tube Defect Fetal Surgery Fetal Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Velie EM, Shaw GM (1996) Impact of prenatal diagnosis and elective termination on prevalence and risks estimates of neural tube defects in California. 1989–1991. Am J Epidemiol 144:473–479PubMedGoogle Scholar
  2. 2.
    Copp AJ (1993) Neural tube defects. Trends Neurosci 16:381–383PubMedCrossRefGoogle Scholar
  3. 3.
    Hunt GM, Poulton A (1995) Open spina bifida: a complete cohort reviewed 25 years after closure. Dev Med Child Neurol 37:19–29PubMedGoogle Scholar
  4. 4.
    Center for Disease Control and Prevention (1992) Economic costs of birth defects and cerebral palsy — United States. MMWR 1995; 44:694–699Google Scholar
  5. 5.
    National Institute of Child Health and Human Development. Management of Myelomeningocele study. Available at
  6. 6.
    Correia-Pinto J, Reis JL, Hutchins GM (2002) In utero meconuim exposure increases spinal cord necrosis in a rat model of myelomeningocele. J Pedriatr Surg 37:488–492CrossRefGoogle Scholar
  7. 7.
    Petzold A, Stiefel D, Copp AJ (2005) Amniotic fluid brain-specific proteins are biomarkers for spinal cord injury in experimental myelomeningocele. J Neurochem 95:594–598PubMedCrossRefGoogle Scholar
  8. 8.
    Lemire RJ (1975) In: Normal and abnormal development of the human nervous system. Harper & Row, New York, pp 1–421Google Scholar
  9. 9.
    Hirose S, Meuli-Simmen C, Meuli M (2003) Fetal surgery for myelomeningocele: panacea or peril? World J Surg 27:87–94PubMedCrossRefGoogle Scholar
  10. 10.
    Koremromp MJ, Van Good JD, Bruinesse HW et al (1986) Early fetal movements in myelomeningocele. Lancet 1:917–918CrossRefGoogle Scholar
  11. 11.
    Sival DA, Begger JH, Staal-Schreinemachers AL et al (1997) Perinatal motor behaviour and neurological outcome in spina bifida aperta. Erly Human Dev 50:27–37CrossRefGoogle Scholar
  12. 12.
    Luthy DA, Wardinsky T, Shurtleff DB et al (1991) Cesarean section before the onset of labor and subsequent motor function in infants with myelomeningocele diagnosed antenatally. N Engl J Med 324:662–68PubMedGoogle Scholar
  13. 13.
    Jonhson MP, Sutton L, Rintoul N et al (2003) Fetal myelomeningocele repair: short term clinical outcomes. Am J Obstet Gynecol 189:482–487CrossRefGoogle Scholar
  14. 14.
    Kollias SS, Goldstein RB, Cogen PH et al (1992) Prenatally detected myelomeningocele: sonographic accuracy in estimation of the spinal level. Radiology 185:109–112PubMedGoogle Scholar
  15. 15.
    Nicolaides KH, Campbell S, Gabbe, SG et al (1986) Ultrasound screening for spina bifida: cranial and cerebellar signs. Lancet 2:72–74PubMedCrossRefGoogle Scholar
  16. 16.
    Thiagarajah S, Henke J, Hogge A et al (1987) Early diagnosis of spina bifida: the value of cranial ultrasound markers. Obstet Gynecol 70:247–250Google Scholar
  17. 17.
    Nyberg DA, Mack LA, Hirsch J et al (1988) Abnormalities of fetal cranial contour in sonographic detection of spina bifida: evaluation of the “lemon” sign. Radiology 167:387–392PubMedGoogle Scholar
  18. 18.
    Mangels KJ, Tulipan N, Tsao LY et al (2002). Fetal MRI in the evaluation of intrauterine myelomeningocele. Pediatr Neurosurg 32:124–131CrossRefGoogle Scholar
  19. 19.
    Aaronson OS, Hernnz-Schulman, Bruner JP et al (2003) Myelomeningocele: prenatal evaluation — comparison between transabdominal US and MR imaging. Radiology 227:839–843PubMedCrossRefGoogle Scholar
  20. 20.
    Iskandar BJ, Tubbs S, Mapstone TB et al (1998) Death in shunted hydrocephalic children in 1900s. Pediatric Neurosurg 28:173–176CrossRefGoogle Scholar
  21. 21.
    Northrup H, Volcik KA (2000) Spina bifida and other neural tube defects. Curr Probl Pediatr 30:313–340PubMedCrossRefGoogle Scholar
  22. 22.
    Bowman RM, McLone DG, Grant JA et al (2001) Spina bifida outcome. A 25-year prospective. Pediatr Neurosurg 34:114–120PubMedCrossRefGoogle Scholar
  23. 23.
    Cochrane DD (1996) Prenatal spinal evaluation and functional outcome of patients born with myelo — menin gocele: information for improved prenatal counselling and outcome prediction. Fetal Diagn Ther 11:159–168PubMedCrossRefGoogle Scholar
  24. 24.
    Skobejo-Wlodarska (2002) Treatment of neuropathic urinary and faecal incontinence. Eur J Pedriat Surg 12:318–321CrossRefGoogle Scholar
  25. 25.
    Cate IMP, Kennedy C, Stevenson J (2002) Disability and quality of life in spina bifida and hydrocephalus. Dev Med Child Neurol 44:317–322PubMedCrossRefGoogle Scholar
  26. 26.
    Michejda M (1984) Intrauterine treatment of spina bifida: primate model. Z Kinderchir 39:259–261PubMedGoogle Scholar
  27. 27.
    Meuli M, Meuli-Simmen C, Yingling C et al (1995) In utero surgery rescues neurological function at birth in sheep. Nat Med 1:342–347PubMedCrossRefGoogle Scholar
  28. 28.
    Bruner JP, Richards WO, Tulipan N et al (1999) Endoscopic coverage of fetal myelomeningocele in utero. Am J Obstet Gynecol 180:153–158PubMedCrossRefGoogle Scholar
  29. 29.
    Tulipan N, Bruner JP (1998) Myelomeningocele repair in utero: a report of three cases. Pediatr Neurosurg 28:177–180PubMedCrossRefGoogle Scholar
  30. 30.
    Adzick NS, Sutton L, Crombleholme T et al (1998) Successful fetal surgery for spina bifida. Lancet 352:1675–1676PubMedCrossRefGoogle Scholar
  31. 31.
    Sutton L, Adzik NS, Johnson MP (2003) Fetal surgery of myelomeningocele. Childs Nerv Syst 19:587–591PubMedCrossRefGoogle Scholar
  32. 32.
    Tulipan N, Sutton L, Bruner JP et al (2003) The effect of intrauterine myelomeningocele repair on the incidence of shunt dependent hydrocephalus. Pediatr Neurosurg 38:27–33PubMedCrossRefGoogle Scholar
  33. 33.
    Tulipan N (2003) Intrauterine myelomeningocele repair. Clin Perinatol 30:521–530PubMedCrossRefGoogle Scholar
  34. 34.
    Bruner JP, Tulipan N, Paschall RL et al (1999) Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA 282:1819–1825PubMedCrossRefGoogle Scholar
  35. 35.
    Tubbs RS, Chamber MR, Smyth MD et al (2003) Late gestational intrauterine repair does not improve lower extremity function. Pediatr Neurosurg 38:128–132PubMedCrossRefGoogle Scholar
  36. 36.
    Sutton L, Adzick N, Bilaniuk L et al (1999) Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA 282:1826–1831PubMedCrossRefGoogle Scholar
  37. 37.
    Holzbeierlein J, Pope JI, Adams MC et al (2000) The urodynamic profile of myelodysplasia in childhood with spinal closure during gestation. J Urol 164:1336–1339PubMedCrossRefGoogle Scholar
  38. 38.
    Bruner JP, Tulipan N (2005) Intrauterine repair of spina bifida. Clin Obstet Gynecol 48:942–955PubMedCrossRefGoogle Scholar
  39. 39.
    Werler MM, Louik C, Shapiro S et al (1996) Prepregnant weight in relation to risk of neural tube defects. JAMA 275:1089–1092PubMedCrossRefGoogle Scholar
  40. 40.
    Almodin CG, Moron AF, Cavalheiro S (2006) The Almodin-Moron trocar for uterine entry during fetal surgery. Fetal Diagn Ther 21:414–417PubMedCrossRefGoogle Scholar
  41. 41.
    Bruner JP, Boehm FH, Tulipan N (1999) The Tulipan-Bruner trocar for uterine entry during fetal surgery. Am J Obstet Gynecol 181:1188–1191PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Sergio Cavalheiro
    • 1
  • Wagner J. Hisaba
    • 2
  • Antonio F. Moron
    • 2
  • Carlos G. Almodin
    • 2
  1. 1.Department of Neurology and NeurosurgeryFederal University of São PauloSão PauloBrazil
  2. 2.Department of Fetal MedicineFederal University of São PauloSão PauloBrazil

Personalised recommendations