Advertisement

Independence in Mobility

  • Sharon Vladusic
  • David Phillips

Abstract

The recent integration of children and adults with disabilities into mainstream society has resulted in a renewed interest in their ability to be independent and to lead productive lifestyles. Advances in science and technology have enabled many with disabilities to achieve functional goals in activities of daily living, which include mobility.

Keywords

Bone Mineral Density Spina Bifida Manual Muscle Test Spinal Cord Injury Wheelchair User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organisation (1980) International classification of impairments, disabilities and handicaps. Geneva, pp 181–194Google Scholar
  2. 2.
    Butler C (1991) Augmentative mobility: why do we do it? Physical Med and Rehab Clinics of N America 2(4):801–815Google Scholar
  3. 3.
    McDermott JF, Akina E (1972) Understanding and improving the personality development of children with physical handicaps. Clin Pediatr 11:134CrossRefGoogle Scholar
  4. 4.
    World Health Organisation (2002) International classification of functioning, disability and health. Geneva, pp 1–22Google Scholar
  5. 5.
    Bunch WH (1976) Myelomeningocele. Instr Course Lect 25:61–65Google Scholar
  6. 6.
    Bier JB, Prince A, Tremont M, Msall M (2005) Medical, functional and social determinants of health-related quality of life in individuals with myelomeningocele. Dev Med Child Neurol 47:609–612PubMedCrossRefGoogle Scholar
  7. 7.
    Schoenmakers MA, Uiterwaal CS, Gulmans VA et al (2005) Determinants of functional independence and quality of life in children with spina bifida. Clin Rehabil 19:677–685PubMedCrossRefGoogle Scholar
  8. 8.
    Meeusen R (2005) Exercise and the brain: insight in new therapeutic modalities. Ann Transplant 10(4):49–51PubMedGoogle Scholar
  9. 9.
    Blum RW, Pfaffinger K (1994) Myelodysplasia in childhood and adolescence. Pediatr Rev 15(12):480–484PubMedGoogle Scholar
  10. 10.
    Bandini LG, Schoeller DA, Fukagawa NK et al (1991) Body composition and energy expenditure in adolescents with cerebral palsy or myelo dysplasia. Pediatr Res 29:70–77PubMedCrossRefGoogle Scholar
  11. 11.
    Van den Berg-Emons HJ, Bussmann JB, Brobbel AS et al (2001) Everyday physical activity in adolescents and young adults with meningomyelocele as measured with a novel activity monitor. J Pediatr 139(6):880–886PubMedCrossRefGoogle Scholar
  12. 12.
    Van den Berg-Emons HJ, Bussmann JB, Meyerink HJ et al (2003) Body fat, fitness and level of everyday physical activity in adolescents and young adults with myelomeningocele. J Rehabil Med 35(6):271–275PubMedCrossRefGoogle Scholar
  13. 13.
    Agre JC, Findley MD, McNally MC et al (1987) Physical activity capacity in children with myelomeningocele. Arch Phys Med Rehabil 68(6):372–377PubMedGoogle Scholar
  14. 14.
    Sherman MS, Kaplan JM, Effgen S et al (1997) Pulmonary dysfunction and reduced exercise capacity in patients with myelomeningocele. J Pediatr 131(3):413–418PubMedCrossRefGoogle Scholar
  15. 15.
    Francis K (1996) Physical activity in the prevention of cardiovascular disease. Phys Ther 76:456–468PubMedGoogle Scholar
  16. 16.
    Baranowski T, Bouchard C, Bar-Or O et al (1992) Assessment, prevalence and cardiovascular benefits of physical activity and fitness in youth. Med Sci Sports Exerc 24(6 suppl):S237–S247PubMedGoogle Scholar
  17. 17.
    O’Connell D, Barnhart R (1995) Improvement in wheelchair propulsion in paediatric wheelchair users through resistance training: a pilot study. Arch Phys Med Rehabil 76:368–372PubMedCrossRefGoogle Scholar
  18. 18.
    Fragala-Pinkham MA, Haley SM, Rabin J, Kharasch VS (2005) A fitness program for children with disabilities. Phys Ther 85(11)1182–1200PubMedGoogle Scholar
  19. 19.
    Andrade CK, Kramer J, Garber M, Longmuir P (1991) Changes in self-concept, cardiovascular endurance and muscular strength in children with spina bifida aged 8 to 13 years in response to a 10-week physical activity program: a pilot study. Child Care Health Dev 17:183–196PubMedCrossRefGoogle Scholar
  20. 20.
    Drennan JC, Banta JV, Bunch WH, Linseth RE (1987) Symposium: Current concepts in the management of myelomeningocele. Contemp Orthop 19(1):63–88Google Scholar
  21. 21.
    Ryan KD, Ploski C, Emans JB (1991) Myelodysplasia — the musculoskeletal problem: habilitation from infancy to adulthood. Phys Ther 71(12):935–946PubMedGoogle Scholar
  22. 22.
    Daniels L, Worthington C (1980) Muscle testing: Techniques of manual evaluation. 5th edn, WB Saunders, PhiladelphiaGoogle Scholar
  23. 23.
    Murdoch A (1980) How valuable is muscle charting? Physiotherapy 66(7):221–223PubMedGoogle Scholar
  24. 24.
    McDonald CM, Jaffe KM, Shurtleff DB (1986) Assessment of muscle strength in children with myelo — meningocele: accuracy and stability of measurements over time. Arch Phys Med Rehabil 67:885–861Google Scholar
  25. 25.
    Schopler SA, Menelaus MB (1987) Significance of the strength of the quadriceps muscles in children with myelomeningocele. J Pediatr Orthop 7(5):507–512PubMedGoogle Scholar
  26. 26.
    Mazur JM, Stillwell A, Menelaus MB (1986) The significance of spasticity in lower and upper limbs in myelomeningocele. J Bone Joint Surg 68-B(2):213–218Google Scholar
  27. 27.
    Bartonek A, Saraste H, Knutson LM (1999) Comparison of different systems to classify the neurological level of lesion in patients with myelomeningocele. Dev Med Child Neurol 41:796–805PubMedCrossRefGoogle Scholar
  28. 28.
    Sharrard WJW (1964) The segmental innervation of the lower limb muscles in man. Ann R Coll Surg Engl 35:106–122PubMedGoogle Scholar
  29. 29.
    Stark GD, Baker GC (1967) The neurological involvement of the lower limbs in myelomeningocele. Dev Med Child Neurol 9:732–744Google Scholar
  30. 30.
    Mazur JM, Menelaus MB (1991) Neurologic status of spina bifida patients and the orthopaedic surgeon. Clin Orthop Relat Res 264:54–63PubMedGoogle Scholar
  31. 31.
    Duffy CM, Hill AE, Cosgrove AP et al (1996) The influence of abductor weakness on gait in spina bifida. Gait Posture 4:34–38CrossRefGoogle Scholar
  32. 32.
    Hoffer MM, Feiwell E, Perry R, Bonnett G (1973) Functional ambulation in patients with myelomeningocele. J Bone Joint Surg 55:137–148PubMedGoogle Scholar
  33. 33.
    De Souza LJ, Carroll N (1976) Ambulation of the braced myelomeningocele patient. J Bone Joint Surg 58:112–118Google Scholar
  34. 34.
    Feiwell E, Sakai D, Blatt T (1978) The effect of hip reduction in patients with myelomeningocele. J Bone Joint Surg 60-A:169–173Google Scholar
  35. 35.
    Stillwell A, Menelaus MB (1983) Walking ability in mature patients with spina bifida cystica. J Pediatr Orthop 3:184–190PubMedGoogle Scholar
  36. 36.
    Lindseth RE (1976) Treatment of the lower extremity in children paralysed by myelomeningocele (birth to 18 months). Instr Course Lect 25:76–82Google Scholar
  37. 37.
    Asher M, Olsen J (1983) Factors affecting the ambulatory status of patients with spina bifida cystica. J Bone Joint Surg 65:350–356PubMedGoogle Scholar
  38. 38.
    Rosenstein BD, Greene WB, Herrington RT, Blum AS (1987) Bone density in myelomeningocele: the effects of ambulatory status and other factors. Dev Med Child Neurol 29:486–494PubMedGoogle Scholar
  39. 39.
    Samuelsson L, Skoog M (1988) Ambulation in patients with myelomeningocele: a multivariate statistical analysis. J Pediatr Orthop 8:569–75PubMedGoogle Scholar
  40. 40.
    Broughton NS, Malcolm BM, Cole WG, Shurtleff DB (1993) The natural history of hip deformity in myelomeningocele. J Bone Joint Surg 75-B:760–763Google Scholar
  41. 41.
    McDonald C, Jaffe K, Mosca V, Shurtleff DB (1991) Ambulatory outcome of children with myelomeningocele: effect of lower-extremity muscle strength. Dev Med Child Neurol 33(6):482–490PubMedGoogle Scholar
  42. 42.
    Knutson LM, Clark DE (1991) Orthotic devices for ambulation in children with cerebral palsy and myelomeningocele. Phys Ther 71:947–960PubMedGoogle Scholar
  43. 43.
    Huff CW, Ramsey PL (1978) Myelodysplasia: the influence of the quadriceps and hip abductor muscles on ambulatory function and stability of the hip. J Bone Joint Surg 60-A:432–443Google Scholar
  44. 44.
    Swank M, Dias L (1992) Myelomeningocele: a review of the orthopaedic aspects of 206 patients treated from birth with no selection criteria. Dev Med Child Neurol 234:1047–1052Google Scholar
  45. 45.
    Swank M, Dias LS (1994) Walking ability in spina bifida patients: a model for predicting future ambulatory status based on sitting balance and motor level. J Pediatr Orthop 14:715–718PubMedGoogle Scholar
  46. 46.
    Smith PL, Owen JL, Fehlings D, Wright JG (2005) Measuring physical function in children with spina bifida and dislocated hips: the spina bifida hips questionnaire. J Pediatr Orthop 25(3):273–279PubMedCrossRefGoogle Scholar
  47. 47.
    Gaffe JE, Robinson JM, Parker PM (1984) The walking ability of 14 to 17-year-old teenagers with spina bifida — a physiotherapy study. Physiotherapy 70:473–474Google Scholar
  48. 48.
    Dawnette L, Tolosa JE, Kaufmann M et al (2004) Elective cesarean delivery and long-term motor function or ambulation status in infants with myelomeningocele. ACOG Educ Bull 103(3):469–473Google Scholar
  49. 49.
    Findley TW, Agre JC, Habeck RV et al (1987) Ambulation in the adolescent with myelomeningocele I: Early childhood predictors. Arch Phys Med Rehabil 68:518–522PubMedGoogle Scholar
  50. 50.
    Lerner-Frankiel MB, Vargus S, Brown M et al (1986) Functional community ambulation: what are your criteria? Clin Manage Phys Ther 6:12Google Scholar
  51. 51.
    Bartonek A, Saraste H, Samuelsson L, Skoog M (1999) Ambulation in patients with myelomeningocele: a 12 year follow-up. J Pediatr Orthop 19(2):202–206PubMedCrossRefGoogle Scholar
  52. 52.
    Graham HK, Harvey A, Rodda J et al (2004) The Functional Mobility Scale (FMS). J Pediatr Orthop 24(5):514–520PubMedGoogle Scholar
  53. 53.
    Williams EN, Carroll SG, Reddihough DS et al (2005) Investigation of the timed ’Up and Go’ test in children. Dev Med Child Neurol 47:518–524PubMedCrossRefGoogle Scholar
  54. 54.
    Williams EN (2004) An investigation of the Timed ‘Up and Go’ test in children. Thesis. Master of Physiotherapy, The University of Melbourne.Google Scholar
  55. 55.
    Shurtleff DB (1991) Computer databases for paediatric disability: Clinical and research applications. Physical Med and Rehab Clinics of N America 2:665–687Google Scholar
  56. 56.
    Bayley N (1993) The Bayley scales of infant development manual. Second Edition. Psychological Corporation, San Antonio, TexasGoogle Scholar
  57. 57.
    Chandler LS, Andrews MD, Swanson MW (1980) Movement assessment of infants: a manual. Published by the authors, Rolling Bay, WashingtonGoogle Scholar
  58. 58.
    Burns Y, Gilmour J, Kentish M, MacDonald J (1996) Physiotherapy management of children with neurological, neuromuscular and neurodevelopmental problems. In: Burns Y and MacDonald J (eds) Physiotherapy and the growing child. WB Saunders, London, pp 374–413Google Scholar
  59. 59.
    Bax M (1991) Walking: Editorial. Dev Med Child Neurol 33:471–472PubMedGoogle Scholar
  60. 60.
    Mazur JM, Shurtleff D, Menelaus MB, Colliver J (1989) Orthopaedic management of high level spina bifida: early walking compared with early use of a wheelchair. J Bone Joint Surg 71:56–61PubMedGoogle Scholar
  61. 61.
    Shurtleff DB (1986) Mobility. In: Shurtleff DB (ed) Myelodysplasia and exstrophies: Significance, prevention and treatment. Grune & Stratton, New York, pp 313–356Google Scholar
  62. 62.
    Liptack GS, Shurtleff DB, Bloss J et al (1992) Mobility aids for children with high level myelomeningocele: parapodium versus wheelchair. Dev Med Child Neurol 34:787–796Google Scholar
  63. 63.
    Hayden PW (1985) Adolescents with myelomeningocele. Pediatr Rev 6(8):245–252CrossRefGoogle Scholar
  64. 64.
    Ito JA (2001) Issues for young adults with spina bifida. In: Sarwark JF, Lubicky JP (eds) Caring for the child with spina bifida. American Academy of Orthopaedic Surgeons, Illinois, pp 609–625Google Scholar
  65. 65.
    Duffy CM, Hill AE, Cosgrove AP et al (1996) Threedimensional gait analysis in spina bifida. J Pediatr Orthop 16(6):786–791PubMedGoogle Scholar
  66. 66.
    Broughton N, Menelaus MB (1998) General considerations. In: Broughton N, Menelaus MB (eds) Menelaus’ orthopaedic management of spina bifida cystica. 3rd edn, WB Saunders, London, pp 1–18Google Scholar
  67. 67.
    Clancy CA, McGrath PJ, Oddson BE (2005) Pain in children and adolescents with spina bifida. Dev Med Child Neurol 47:27–34PubMedCrossRefGoogle Scholar
  68. 68.
    Hendrick EB, Hoffman HJ, Humphreys RP (1982) The tethered spinal cord. Clin Neurosurg 30:457–463Google Scholar
  69. 69.
    Johnson DL, Levy LM (1995) Predicting outcome in tethered cord syndrome: a study of cord motion. Pediatr Neurosurg 22:115–119PubMedCrossRefGoogle Scholar
  70. 70.
    Alpert SW, Koval KJ, Zuckerman JD (1996) Neuropathic arthopathy: review of current knowledge. J Am Acad Orthop Surg 4:100–108PubMedGoogle Scholar
  71. 71.
    Duffy CM, Hill AE, Cosgrove AP et al (1996) Threedimensional gait analysis in spina bifida. J Pediatr Orthop 16(6):786–791PubMedGoogle Scholar
  72. 72.
    Gutierrez EM, Bartonek A, Haglund-Akerlind Y, Saraste H (2003) Characteristic gait kinematics in persons with lumbosacral myelomeningocele. Gait Posture 18: 170–177PubMedCrossRefGoogle Scholar
  73. 73.
    Vankoski S, Sarwark JF, Moore C, Dias L (1995) Characteristic pelvic, hip and knee kinematic patterns in children with lumbosacral myelomeningocele. Gait Posture 3:51–57CrossRefGoogle Scholar
  74. 74.
    Gupta RT, Vankoski S, Novak RA, Dias S (2005) Trunk kinematics and the influence of valgus stress in persons with high sacral level myelomeningocele. J Pediatr Orthop 25(1):89–94PubMedCrossRefGoogle Scholar
  75. 75.
    Ounpuu S, Thomson J, Davis R, DeLuca P (2000) An examination of the knee function during gait in children with myelomeningocele. J Pediatr Orthop 20:629–635PubMedGoogle Scholar
  76. 76.
    Moore C, Dias L, Vankoski S et al (1995) Valgus stress at the knee joint in lumbo-sacral myelomeningocele: a gait analysis evaluation. Dev Med Child Neurol 28(suppl):2–3Google Scholar
  77. 77.
    Nagarkatti DG, Banta JV, Thomson JD (2000) Charcot arthropathy in spina bifida. J Pediatr Orthop 20:82–87PubMedCrossRefGoogle Scholar
  78. 78.
    Williams JJ, Graham GP, Dunne KB, Menelaus MB (1993) Late knee problems in myelomeningocele. J Pediatr Orthop 13:701–703PubMedGoogle Scholar
  79. 79.
    Selber P, Dias L (1998) Sacral-level myelo menin gocele long-term outcome in adults. J Pediatr Orthop 18:423–427PubMedCrossRefGoogle Scholar
  80. 80.
    Gutierrez EM, Bartonek A, Haglund-Akerlind Y, Saraste H (2005) Kinetics of compensatory gait in persons with myelomeningocele. Gait Posture 21:12–23PubMedCrossRefGoogle Scholar
  81. 81.
    Dunteman R, Vankoski SJ, Dias LS (2000) Internal derotation osteotomy of the tibia: pre-and postoperative gait analysis in persons with high sacral myelomeningocele. J Pediatr Orthop 20:623–628PubMedGoogle Scholar
  82. 82.
    Lim R, Dias L, Vankoski S et al (1998) Valgus knee stress in lumbosacral myelomeningocele: a gait-analysis evaluation. J Pediatr Orthop 18(4):428–433PubMedCrossRefGoogle Scholar
  83. 83.
    Vankoski S, Moore C, Statler KD et al (1997) The influence of forearm crutches on pelvic and hip kinematics in children with low lumbar level myelomeningocele: don’ t throw away the crutches. Dev Med Child Neurol 39:614–619PubMedGoogle Scholar
  84. 84.
    Sawatzky BJ, Slobogean GP, Reilly CW et al (2005) Prevalence of shoulder pain in adult-versus childhoodonset wheelchair users: a pilot study. J Rehabil Res Dev 42(3):1–8PubMedCrossRefGoogle Scholar
  85. 85.
    James CC (1970) Fractures of the lower limbs in spina bifida cystica: a survey of 44 fractures in 122 children. Dev Med Child Neurol 22(suppl):88–93Google Scholar
  86. 86.
    Anschuetz RH, Freehafer AA, Shaffer JW, Dixon MS (1984) Severe fracture complications in myelodysplasia. J Pediatr Orthop 4:22–24PubMedGoogle Scholar
  87. 87.
    Barnett JS, Menelaus MB (1998) Pressure sores and pathological fractures. In: Broughton NS, Menelaus MB (eds) Menelaus’ orthopaedic management of spina bifida cystica. 3rd edn, WB Saunders, London, pp 51–65Google Scholar
  88. 88.
    Quilis AN (1974) Fractures in children with myelo — meningocele. Acta Orthop Scand 45:883–897PubMedGoogle Scholar
  89. 89.
    Cuxart A, Iborra J, Melendez M, Pages E (1992) Physeal injuries in myelomeningocele patients. Paraplegia 30:791–794PubMedGoogle Scholar
  90. 90.
    Lock TR, Aronson DD (1989) Fractures in patients who have myelomeningocele. J Bone Joint Surg 71:1153–1157PubMedGoogle Scholar
  91. 91.
    Quan A, Adams R, Ekmark E, Baum M (1998) Bone mineral density in children with myelomeningocele. Pediatrics 102:E34PubMedCrossRefGoogle Scholar
  92. 92.
    Chan GM, Hess M, Hollis J, Book LS (1984) Bone mineral status in childhood accidental fractures. Am J Disease Child 138:842–845Google Scholar
  93. 93.
    Rosen N, Spira E (1974) Paraplegic use of walking brace: a survey. Arch Phys Med Rehabil 55:310–314Google Scholar
  94. 94.
    Greene WB, Carter MD, DeMasi RA, Herrington RT (1991) Bone mineral density in myelomeningocele: effect of growth and other factors. Dev Med Child Neurol (suppl) 64:18Google Scholar
  95. 95.
    Thompson CR, Figoni SF, Devocelle HA et al (2000) Effect of dynamic weight bearing on lower extremity bone mineral density in children with neuromuscular impairment. Clin Kinesiol 54(1):13–18Google Scholar
  96. 96.
    Valtonen KM, Goksor L, Jonsson O et al (2006) Osteoporosis in adults with meningomyelocele: an unrecognized problem at rehabilitation clinics. Arch Phys Med Rehabil 87:376–382PubMedCrossRefGoogle Scholar
  97. 97.
    Stuberg WA (1992) Considerations related to weightbearing programs in children with developmental disabilities. Phys Ther 72(1):35–40PubMedGoogle Scholar
  98. 98.
    Waters RL, Mulroy, S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9:207–231PubMedCrossRefGoogle Scholar
  99. 99.
    Fisher SV, Gullickson G Jr (1978) Energy cost of ambulation in health and disability: literature review. Arch Phys Med Rehabil 59:124–133PubMedGoogle Scholar
  100. 100.
    Bare A, Vankoski SJ, Danduran M, Boas S (2001) Independent ambulators with high sacral myelo menin — gocele: the relation between walking kinematics and energy consumption. Dev Med Child Neurol 43:16–21PubMedCrossRefGoogle Scholar
  101. 101.
    Galli M, Crivellini M, Fazzi E, Motta F (2000) Energy consumption and gait analysis in children with myelomeningocele. Funct Neurol 15(3):171–175PubMedGoogle Scholar
  102. 102.
    Williams LO, Anderson AD, Campbell J (1983) Energy costs of walking and of wheelchair propulsion by children with myelodysplasia: comparison with normal children. Dev Med Child Neurol 25:617–624PubMedGoogle Scholar
  103. 103.
    Evans EP, Tew B (1981) Energy expenditure of spina bifida children during walking and wheelchair ambulation. Z Kinderchir 34:425–427PubMedGoogle Scholar
  104. 104.
    Duffy CM, Hill AE, Cosgrove AP et al (1996) Energy consumption in children with spina bifida and cerebral palsy: a comparative study. Dev Med Child Neurol 38:238–243PubMedGoogle Scholar
  105. 105.
    Moore CA, Bahareh N, Novak RA, Dias LS (2001) Energy cost in low lumbar myelomeningocele. J Pediatr Orthop 21(3):388–391PubMedCrossRefGoogle Scholar
  106. 106.
    Franks CA, Palisano RJ, Darbee JC (1991) The effect of walking with an assistive device and using a wheelchair on school performance in students with myelomeningocele. Phys Ther 71(8):570–579PubMedGoogle Scholar
  107. 107.
    Salmela JH, Ndoye OD (1986) Cognitive distortions during progressive exercise. Percept Mot Skills 63:1067–1072Google Scholar
  108. 108.
    Spano JF, Burke EJ (1976) Effects of three levels of work intensity on performance of a fine motor skill. Percept Mot Skills 42:63–66PubMedGoogle Scholar
  109. 109.
    Gupta VP, Sharma TR, Jaspal SS (1974) Physical activity and efficiency of mental work. Percept Mot Skills 38:205PubMedGoogle Scholar
  110. 110.
    Bartonek A, Eriksson MC, Saraste H (2002) Heart rate and walking velocity during independent walking in children with low and midlumbar myelomeningocele. Pediatr Phys Ther 14(4):185–190PubMedCrossRefGoogle Scholar
  111. 111.
    Bleck EE (1987) Goals, treatment and management. In: Bleck EE (ed) Orthopaedic management in cerebral palsy: Clinics in developmental medicine No 99–100. JB Lippincott, Philadelphia, p 174Google Scholar
  112. 112.
    Kottke FJ, Pauley DL, Ptak RA (1966) The rationale for prolonged stretching for correction of shortening of muscle tissue. Arch Phys Med Rehabil 47:345–352PubMedGoogle Scholar
  113. 113.
    Broughton N, Menelaus MB (1998) General considerations. In: Broughton N, Menelaus MB (eds) Menelaus’ orthopaedic management of spina bifida cystica. 3rd edn, WB Saunders, LondonGoogle Scholar
  114. 114.
    Roberts D, Shepherd RW, Shepherd K (1991) Anthropometry and obesity in myelomeningocele. Paediatr. J Paediatr Child Health 27:83–90CrossRefGoogle Scholar
  115. 115.
    Mita K, Akataki K, Itoh K et al (1993) Assessment of obesity in children with spina bifida. Dev Med Child Neurol 35(4):305PubMedGoogle Scholar
  116. 116.
    Shurtleff DB, Lamers J, Goiney T, Gordon L (1982) Are myelodysplastic children fat? Anthropometric measures: a preliminary report. Spina Bifida Ther 4(1):1–21Google Scholar
  117. 117.
    Shurtleff DB, Duguay S, Cardenas DD, Walker WO (2005) Obesity and myelomeningocele: Anthropometric measure of patients with myelomeningocele. Society for Research into Hydrocephalus and Spina Bifida, Barcelona, Hospital Universitari Vall d’Hebron, SpainGoogle Scholar
  118. 118.
    Shepherd K, Roberts D, Golding S et al (1991) Body composition in myelomeningocele. Am J Clin Nutr 53:1–6PubMedGoogle Scholar
  119. 119.
    Hayes-Allen MC (1972) Obesity and short stature in children with myelomeningocele. Dev Med Child Neurol 14(suppl 22):59–64Google Scholar
  120. 120.
    Charney EB, Rosenblum M, Finegold D (1981) Linear growth in a population of children with myelomeningocele. Z Kinderchir 34:415–419PubMedGoogle Scholar
  121. 121.
    Littlewood, RA, Trocki O, Shepherd RW et al (2003) Resting energy expenditure and body composition in children with myelo menin gocele. Pediatr Rehabil 6(1):31–37PubMedCrossRefGoogle Scholar
  122. 122.
    Bandini LG, Schoeller DA, Fukagawa NK et al (1990) Body composition and energy expenditure in adolescents with cerebral palsy or myelodysplasia. Pediatr Res 29(1):70–77Google Scholar
  123. 123.
    Shurtleff DB (1986) Dietary Considerations. In: Shurtleff DB (ed) Myelodysplasia and exstrophies: Significance, prevention and treatment. Grune & Stratton, New York, pp 285–311Google Scholar
  124. 124.
    Hayes-Allen MC, Tring FL (1972) Obesity: Another hazard for spina bifida children. Br J Prev Soc Med 27:192–196Google Scholar
  125. 125.
    Shurtleff DB, Dunne K (1986) Adults and adolescents with myelomeningocele. In: Shurtleff DB (ed) Myelodysplasia and exstrophies: Significance, prevention and treatment. Grune & Stratton, New York, pp 433–448Google Scholar
  126. 126.
    Brown JP (2001): Orthopaedic care of children with spina bifida: you’ ve come a long way baby! Orthop Nurs 20(4):51–58PubMedGoogle Scholar
  127. 127.
    Dietz WH (1983) Childhood obesity: susceptibility, cause and management. J Pediatr 103:676–686PubMedCrossRefGoogle Scholar
  128. 128.
    Carroll N (1974) The orthotics management of the spina bifida child. Clin Orthop 102:108–114PubMedCrossRefGoogle Scholar
  129. 129.
    Kirpalani HM, Parkin PC, Willan AR et al (2000) Quality of life in spina bifida: importance of parental hope. Arch Dis Child 83:293–297PubMedCrossRefGoogle Scholar
  130. 130.
    Pit-ten Cate IM, Kennedy C, Stevenson J (2002) Disability and quality of life in spina bifida and hydrocephalus. Dev Med Child Neurol 44:317–322PubMedCrossRefGoogle Scholar
  131. 131.
    Sawin KJ, Brei TJ, Buran CF, Fastenau PS (2002) Factors associated with quality of life in adolescents with spina bifida. J Holist Nurs 20(3):279–304PubMedCrossRefGoogle Scholar
  132. 132.
    Liptak GS, Bloss JW, Briskin H et al (1988) The management of children with spinal dysraphism. J Child Neurol 3(1):3–20PubMedGoogle Scholar
  133. 133.
    Appleton PL, Minchom PE, Ellis NC et al (1994) The self-concept of young people with spina bifida: a population-based study. Dev Med Child Neurol 36:198–215PubMedGoogle Scholar
  134. 134.
    Thomas AP, Bax MC, Smyth DP (1989) The health and social needs of young adults with physical disabilities. Blackwell Scientific Publications, OxfordGoogle Scholar
  135. 135.
    Minchom PE, Ellis NC, Appleton PL et al (1995) Impact of functional severity on self concept in young people with spina bifida. Arch Dis Child 73(1):48–52PubMedGoogle Scholar
  136. 136.
    Vinck A, Maassen B, Mullaart R, Rotteveel J (2006) Arnold-Chiari malformation and cognitive functioning in spina bifida. J Neurol Neurosurg Psychiatry 77:1083–1086PubMedCrossRefGoogle Scholar
  137. 137.
    Iddon JL, Morgan DJR, Ahmed R et al (2003) Memory and learning in young adults with hydrocephalus and spina bifida: specific cognitive profiles. Eur J Pediatr Surg 13:S28–S46Google Scholar
  138. 138.
    Friedrich WN, Lovejoy MC, Shaffer J et al (1991) Cognitive abilities and achievement status of children with myelomeningocele: a contemary sample. J Pediatr Psychol 4:423–428CrossRefGoogle Scholar
  139. 139.
    Wills KE (1993) Neuropsychological functioning in children with spina bifida and/or hydrocephalus. J Clin Child Psychol 2:247–265Google Scholar
  140. 140.
    Casari EF, Fantino AG (1998) A longitudinal study of cognitive abilities and achievement status of children with myelomeningocele and their relationship with clinical types. Eur J Pediatr Surg 8:52–54PubMedCrossRefGoogle Scholar
  141. 141.
    Lindquist B, Carlsson G, Persson E, Uvebrant P (2005) Learning disabilities in a population-based group of children with hydrocephalus. Acta Paediatrica 94:878–883PubMedCrossRefGoogle Scholar
  142. 142.
    Fletcher JM, Brookshire BL, Landry SH et al (1996) Attentional skills and executive functions in children with early hydrocephalus. Developmental Neuropsychology 12:53–76CrossRefGoogle Scholar
  143. 143.
    Burmeister R, Hannay HJ, Copeland K et al (2005) Attention problems and executive functions in children with spina bifida and hydrocephalus. Child Neuropsychology 11:265–283PubMedCrossRefGoogle Scholar
  144. 144.
    Mapstone TB, Rekate HL, Nulsen FE et al (1984) Relationship of CSF shunting and IQ in children with myelomeningocele. Child’ s Brain 11(2):112–118CrossRefGoogle Scholar
  145. 145.
    Rendeli C, Salvaggio E, Cannizzaro GS et al (2002) Does locomotion improves the cognitive profile of children with myelomeningocele? Child’ s Nervous System 18:231–234CrossRefGoogle Scholar
  146. 146.
    Banta JV, Casey JM, Bedell L, Morgan J (1983) Long-term ambulation in spina bifida. Dev Med Child Neurol 110 (abstract)Google Scholar
  147. 147.
    Taylor A, McNamara A (1990) Ambulation status of adults with myelomeningocele. Z Kinderchir 45(1):32–33PubMedGoogle Scholar
  148. 148.
    Fraser RK, Hoffman EB, Sparks LT, SS Buccimazza (1992) The unstable hip and mid-lumbar myelo — meningocele. J Bone Joint Surg 74-B(1):143–146Google Scholar
  149. 149.
    Charney EB, Melchionni RN, Smith DR (1991) Community ambulation by children with myelomeningocele and high level paralysis. J Pediatr Orthop 11:579–582PubMedGoogle Scholar
  150. 150.
    Williams EN, Broughton NS, Menelaus MB (1999) Age-related walking in children with spina bifida. Dev Med Child Neurol 41:446–449PubMedCrossRefGoogle Scholar
  151. 151.
    Selber P, Pauleto AC, Dias L (1997) The adult low lumbar and sacral level myelomeningocele. Proceedings from the American Orthopaedic Association Annual Meeting. Colorado Springs, CO, USAGoogle Scholar
  152. 152.
    Selber P, Dias L (1998) Sacral-level myelo menin — gocele: long-term outcome in adults. J Pediatr Orthop 18:423–427PubMedCrossRefGoogle Scholar
  153. 153.
    Park TS, Cail WS, Maggio WM, Mitchell DC (1985) Progressive spasticity and scoliosis in children with myelomeningocele. J Neurosurg 62:367–375PubMedGoogle Scholar
  154. 154.
    Peterson MC (1992) Tethered cord syndrome in myelodyplasia: correlation between level of lesion and height at time of presentation. Dev Med Child Neurol 34:604–610Google Scholar
  155. 155.
    Just M, Schwarz, M, Ermert JA et al (1988) Magnetic resonance imaging of dysraphic myelodysplasia: findings in 56 children and adolescents with postrepair meningomyelocele. Childs Nerv Syst 4:149–153PubMedCrossRefGoogle Scholar
  156. 156.
    Banta JV (1991) The tethered cord in myelomeningocele: should it be untethered? Dev Med Child Neurol 33:173–176PubMedGoogle Scholar
  157. 157.
    Menelaus MB (1976) Orthopaedic management of children with myelomeningocele: a plea for realistic goals. Dev Med Child Neurol 37(18 suppl):3–11Google Scholar
  158. 158.
    Wolf LS, McLaughlin JF (1992) Early motor development in infants with myelomeningocele. Pediatr Phys Ther 4:12–17CrossRefGoogle Scholar
  159. 159.
    Sousa JC, Telzrow RW, Holm RA et al (1983) Developmental guidelines for children with myelodysplasia. Phys Ther 63:21–29PubMedGoogle Scholar
  160. 160.
    Dahl M, Ahlsten G, Carlson H et al (1995) Neurological dysfunction above cele level in children with spina bifida cystica: a prospective study to three years. Dev Med Child Neurol 37:30–40PubMedGoogle Scholar
  161. 161.
    Norrlin S, Strinnholm M, Carlsson M, Dahl M (2003) Factors of significance for mobility in children with myelomeningocele. Acta Paediatr 92:204–210PubMedGoogle Scholar
  162. 162.
    Gilmour J, Kentish M (1996) Aids and orthotics. In: Burns Y and MacDonald J (eds) Physiotherapy and the growing child. WB Saunders, LondonGoogle Scholar
  163. 163.
    Guidera KJ, Smith S, Raney E et al (1993) Use of the reciprocating gait orthosis in myelodysplasia. J Paed Orth 13:341–348Google Scholar
  164. 164.
    Diaz L, Lopis I, Bea Munoz M et al (1993) Ambulation in patients with myelo menin gocele and high-level paralysis. J Paed Orth 11:579–582Google Scholar
  165. 165.
    Katz-Leurer M, Weber C, Smerling-Kerem J et al (2003) Prescribing the reciprocal gait orthosis for myelomeningocele children: A different approach and clinical outcome. Paed Rehab 7(2)105–109CrossRefGoogle Scholar
  166. 166.
    Polliack AA, Elliot S, Caves C et al (2001) Lower extremity orthoses for children with myelomeningocele: User and orthotist perspectives. J Prosthet Orthot 13(4):123–129CrossRefGoogle Scholar
  167. 167.
    Henderson WH, Campbell JW (1969) UC-BL shoe insert: Casting and fabrication. Bull Prosthet Res 10:215–235Google Scholar
  168. 168.
    Duffy CM, Graham HK, Cosgrove AP (2000) The influence of ankle-foot orthoses on gait and energy expenditure in spina bifida. J Paed Orth 20(3):356–361CrossRefGoogle Scholar
  169. 169.
    Thomson JD, Ounpuu S, Davis RB, DeLuca PA (1999) The effects of ankle-foot orthoses on the ankle and knee in persons with myelomeningocele: An evaluation using three-dimensional gait analysis. J Paed Orth 19(1):27–33CrossRefGoogle Scholar
  170. 170.
    Freeman D, Orendurff M, Moor M (1999) Case study: Improving knee extension with floor-reaction anklefoot orthoses in a patient with myelomeningocele and 20 degree knee flexion contractures. J Prosthet and Orthot 11(3):63–68CrossRefGoogle Scholar
  171. 171.
    Hullin MG, Robb JE, Loudon IR (1992) Ankle-foot orthosis function in low-level myelomeningocele. J Paed Orth 12(4):518–21Google Scholar
  172. 172.
    Vankoski SJ, Michaud S, Dias L (2000) External tibial torsion and the effectivness of the solid ankle-foot Orthoses. J Paed Orth 20(3):349–355CrossRefGoogle Scholar
  173. 173.
    Duffy C, Barwood S, Graham HK (1998) Energy studies in spina bifida. Course notes. Clinical gait analysis: a focus on interpretation. Melbourne, AustraliaGoogle Scholar
  174. 174.
    Thomas SS, Buckon CE, Melchionni J et al (2001) Longitudinal assessment of oxygen cost and velocity in children with myelomeningocele: a comparison of the hip-knee-ankle-foot orthosis and the reciprocating Gait Orthosis. J Paed Orth 21:798–803CrossRefGoogle Scholar
  175. 175.
    Yngve DA, Douglas R, Roberts JM (1984) The reciprocating gait orthosis in myelomeningocele. J Paed Orth 4:304–310Google Scholar
  176. 176.
    Rose GK (1979) The principles and practice of hip guidance articulations. Prosthet Orthot Int 3:37–43PubMedGoogle Scholar
  177. 177.
    Motloch WM, Elliott J (1966) Fitting and training children with swivel walkers. Artif Limbs 10:27–38Google Scholar
  178. 178.
    Roussos N, Patrick JH, Hodnett C, Stallard J (2001) A long-term review of severely disabled spina bifida patients using a reciprocal walking system. Disabil Rehabil 23(6):239–244PubMedCrossRefGoogle Scholar
  179. 179.
    Cuddeford TJ, Freeling RP, Thomas SS et al (1997) Energy consumption in children with myelomeningocele: a comparison between reciprocating gait orthosis and hip-knee-ankle-foot orthosis ambulators. Dev Med Child Neur 39:239–242Google Scholar
  180. 180.
    Katz DE, Haideri N, Song K, Wyrick P (1997) Comparative study of conventional hip-knee-ankle-foot orthosis versus reciprocating gait orthosis for children with high-level paraparesis. J Paed Orth 17:377–386CrossRefGoogle Scholar
  181. 181.
    McCall RE, Schmidt WT (1986) Clinical experience with the reciprocal gait orthosis in myelodysplasia. J Paed Orth 6:157–161Google Scholar
  182. 182.
    Broughton N, Menelaus MB (1998) The hip. In: Broughton N, Menelaus MB (eds) Menelaus’ orthopaedic management of spina bifida cystica, 3rd edn. WB Saunders, London, pp 135–144Google Scholar
  183. 183.
    Phillips DL, Field RE, Broughton NS, Menelaus MB (1995) Reciprocating orthoses for children with myelomeningocele: a comparison of two types. JBJS (Br) 77-B:110–113Google Scholar
  184. 184.
    Wallace SJ (1973) The effect of upper limb function on mobility of the children with myelomeningocele. Dev Med Child Neurol 29:84–91Google Scholar
  185. 185.
    Minns RA, Sobkowiak CA, Skardoutsou A et al (1977) Upper limb function in spina bifida. Z Kinderchir 22(4):493–506Google Scholar
  186. 186.
    Muen WJ, Bannister CM (1997) Hand function in subjects with spina bifida. Eur J Paediatr Surg (7 suppl I):18–22Google Scholar
  187. 187.
    Turner A (1986) Upper limb function of children with myelomeningocele. Dev Med Child Neurol 28:790–798PubMedCrossRefGoogle Scholar
  188. 188.
    Aronin PA, Kerrick R (1995) Value of dynamometry in assessing upper extremity function in children with myelomeningocele. Pediatr Neurosurg 2:7–13CrossRefGoogle Scholar
  189. 189.
    Mazur JM, Menelaus MB, Hudson I, Stillwell A (1986) Hand function in spina bifida cystica. J Pediatr Orthop 6:442–447PubMedGoogle Scholar
  190. 190.
    Bartonek A, Saraste H (2001) Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol 43:253–260PubMedCrossRefGoogle Scholar
  191. 191.
    Brinker M, Rosenfeld S, Feiwell E et al (1994) Myelomeningocele at the sacral level: long-term outcomes in adults. J Bone Joint Surg 76-A:1293–1300Google Scholar
  192. 192.
    Carstens C, Rohwedder J, Berghof R (1995) Orthotic treatment and walking ability in patients with myelomeningocele. Z Orthop 133:214–221PubMedGoogle Scholar
  193. 193.
    Schiltenwolf M, Carstens C, Rohwedder J, Grundel E (1991) Results of orthotics treatment in children with myelomeningocele. Eur J Pediatr Surg (1 suppl):50–52Google Scholar
  194. 194.
    Lee E, Carroll NC (1985) Hip stability and ambulatory status in myelomeningocele. J Pediatr Orthop 5:522–527PubMedGoogle Scholar
  195. 195.
    Rose GK, Sankarankutty J, Stallard J (1983) A clinical review of the orthotics treatment of myelo menin — gocele patients. J Bone Joint Surg Br 65(3):242–246PubMedGoogle Scholar
  196. 196.
    Thomas SE, Mazur JM, Child ME, Supan TJ (1989) Quantitative evaluation of AFO use with myelo menin — gocele children. Z Kinderchir 44(1):38–40PubMedGoogle Scholar
  197. 197.
    Flandry F, Burke S, Roberts JM et al (1986) Functional ambulation in myelodysplasia: the effect of orthotics selection on physical and physiologic performance. J Pediatr Orthop 6:661–665PubMedGoogle Scholar
  198. 198.
    Ito J, Saijo H, Araki A et al (1997) Neuroradiological assessment of visuoperceptual disturbance in children with spina bifida and hydrocephalus. Dev Med Child Neurol 3:385–392Google Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Sharon Vladusic
    • 1
  • David Phillips
    • 2
  1. 1.Department of OrthopaedicsRoyal Children’s HospitalMelbourneAustralia
  2. 2.Orthotic InnovationsSurrey HillsAustralia

Personalised recommendations