Noninvasive Sudden Death Risk Stratification: Heart Rate Variability and Turbulence, and QT Dynamicity

  • Antonio Vincenti
  • Stefano Pedretti
Conference paper


Variability in sinus-rhythm pacemaker activity over time is a major physiological characteristic of heart-rate behavior, and many cardiovascular and metabolic conditions result in a change in heart rate variability. The numerous studies of time- and frequency-dependent variability have improved our knowledge of the physiological and pathological patterns of heart-rate variability (HRV). The standard deviation of 24-h mean RR value (SDNN), and measurement of the total variance (or power) in the change of RR at high (HF) and low (LF) frequencies are commonly used to estimate HRV. Power-spectrum analysis (i.e. recording the distribution of power as a function of the frequency at which it occurs) requires the transformation of time-series data by means of advanced mathematical algorithms, generally the fast Fourier transform (FFT) (Fig. 1), which is particularly useful in disclosing the harmonic components of variability.


Heart Rate Variability Chronic Heart Failure Coupling Interval Multicenter Automatic Defibrillator Implantation Trial Heart Rate Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Maria M, Marconi M (2004) Stratificazione del rischio di morte improvvisa aritmica dopo infarto miocardico: ruolo degli esami strumentali invasivi e non invasivi. Giornale Italiano di Aritmologia e Cardiostimolazione 7(3)Google Scholar
  2. 2.
    Lombardi F, Mortara A (1998) Heart rate variability and heart failure. Heart 80:213–214PubMedGoogle Scholar
  3. 3.
    Lombardi F (2000) Chaos theory, heart rate variability, arrhythmic mortality. Circulation 101:8–10PubMedGoogle Scholar
  4. 4.
    Perkiomaki JS, Makikallio TH, Huikuri HV (2005) Fractal and complexity measures of heart rate variability. Clin Exp Hypertens 27:149–158PubMedCrossRefGoogle Scholar
  5. 5.
    Goldberger AL, Amaral LA, Hausdorff JM et al (2002) Fractal dynamics in physiology: alterations with disease and aging. Procl Natl Acad S USA 99:2466–2472CrossRefGoogle Scholar
  6. 6.
    Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262PubMedCrossRefGoogle Scholar
  7. 7.
    Nolan J, Batin PD, Andrews R et al (1998) Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-Heart). Circulation 98:1510–1516PubMedGoogle Scholar
  8. 8.
    Zuanetti G, Neilson JM, Latini R et al (1996) Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The GISSI-2 results. Circulation 94: 432–436PubMedGoogle Scholar
  9. 9.
    Malik M, Camm AJ, Jansse MJ et al (2000) Depressed heart rate variability identifies postinfarction patients who might benefit from prophylactic treatment with amiodarone: a substudy of EMIAT (The European Myocardial Infarct Amiodarone Trial). J Am Coll Cardiol 35:1263–1275PubMedCrossRefGoogle Scholar
  10. 10.
    Camm AJ, Pratt CM, Schwartz PJ et al (2004) Mortality in patients after a recent myocardial infarction: a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation 109:990–996PubMedCrossRefGoogle Scholar
  11. 11.
    Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC (1993) Frequency domain measures of heart period variability to assess risk late after myocardial infarction. J Am Coll Cardiol 21:729–736PubMedCrossRefGoogle Scholar
  12. 12.
    Rashba EJ, Estes NAM, Wang P et al (2006) Preserved heart rate variability identifies low-risk patients with nonischemic dilated cardiomyopathy: results from the DEFINITE trial. Heart rhythm 3:281–286PubMedCrossRefGoogle Scholar
  13. 13.
    Bilchick KC, Fetics B, Djoukeng R et al (2002) Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am J Cardiol 90:24–28PubMedCrossRefGoogle Scholar
  14. 14.
    Brouwer J, van Veldhuisen DJ, Man in ’t Veld AJ et al (1996) Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. The Dutch Ibopamine Multicenter Trial Study Group. J Am Coll Cardiol 28:1183–1189PubMedCrossRefGoogle Scholar
  15. 15.
    Galinier M, Pathak A, Fourcade J et al (2000) Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur Heart J 21:475–482PubMedCrossRefGoogle Scholar
  16. 16.
    Sandercock GRH, Brodie DA (2006) The role of heart rate variability in prognosis for different modes of death in chronic heart failure. Pacing Clin Electrophysiol 29:892–904PubMedCrossRefGoogle Scholar
  17. 17.
    Guzzetti S, La Rovere MT et al (2005) Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur Heart J 26:357–362PubMedCrossRefGoogle Scholar
  18. 18.
    Makikallio TH Huikuri H et al (2001) Fractal analysis and time-and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am J Cardiol 87:178–182PubMedCrossRefGoogle Scholar
  19. 19.
    Watanabe MA, Schmidt G (2004) Heart rate turbulence: a 5-year review. Heart Rhythm 1:732–738)PubMedCrossRefGoogle Scholar
  20. 20.
    Wichterle D, Melenovsky V et al (2002) Mechanism involved in heart rate turbulence. Card Electrophysiol Rev 6:262–266PubMedCrossRefGoogle Scholar
  21. 21.
    Mrowka R, Persson PB (2000) Blunted arterial baroreflex causes “pathological” heart rate turbulence. Am J Physiol Regulatory Integrative Comp Physiol 279:R1171–R1175Google Scholar
  22. 22.
    Dejan D et al (2006) Effects of atropine and pirenzepine on heart rate turbulence. Ann Noninv Electrophysiol 11:34–37CrossRefGoogle Scholar
  23. 23.
    Bauer A, Schneider R et al (2001) Heart rate turbulence dynamicity. Eur Heart J 22(Suppl):436Google Scholar
  24. 24.
    Schwab JO, Coch M, Veit G et al (2001) Post-extrasystolic heart rate turbulence in healthy subjects: influence of gender and basic heart rate. Circulation 104:II-490, 2324Google Scholar
  25. 25.
    Watanabe MA, Marine JE et al (2002) Effects of ventricular premature stimulus coupling interval on blood pressure and heart rate turbulence. Circulation 106:325–330PubMedCrossRefGoogle Scholar
  26. 26.
    Hallstrom AP, Stein PK et al (2004) Structural relationships between measures based on heart beat intervals: potential for improved risk assessment. IEEE Transactions on Biomedical Engineering 51:1414–1420PubMedCrossRefGoogle Scholar
  27. 27.
    Francis J, Watanabe MA (2005) Heart rate turbulence: a new predictor for risk of sudden cardiac death. Ann Noninv Electrophysiol 10:102–109CrossRefGoogle Scholar
  28. 28.
    Bauer A, Barthel P et al (2001) Impact of coupling interval on heart rate turbulence. Eur Heart J 22(Suppl):438Google Scholar
  29. 29.
    Indik JH, Ott P et al (2002) Heart rate turbulence and fractal scaling coefficient in response to premature atrial and ventricular complexes and relationship to the degree of prematurity. J Am Coll Cardiol 39(Suppl A)Google Scholar
  30. 30.
    Savelieva I, Wichterle D et al (2002) Different effects of atrial and ventricular prematurity on heart rate turbulence: relation to left ventricular function. Pacing Clin Electrophysiol 25:II-608Google Scholar
  31. 31.
    Watanabe MA (2003) Heart rate turbulence: a review. Indian Pacing Electrophys J 3:10Google Scholar
  32. 32.
    Bauer A, Barthel P (2002) Dynamics of heart rate turbulence as independent risk predictor after dynamic myocardial infarction. Pacing Clin Electrophysiol 25:II-608Google Scholar
  33. 33.
    Hallstroma AP Steinb PK et al (2005) Characteristics of heart beat intervals and prediction of death. Int J Cardiol 100:37–45CrossRefGoogle Scholar
  34. 34.
    Haigney MC, Moss AJ et al (2004) QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J Am Coll Cardiol 44:1481–1487PubMedCrossRefGoogle Scholar
  35. 35.
    Cygankiewicz I, Wranicz JK et al (2003) Clinical covariates of abnormal heart rate turbulence in coronary patients. Ann Noninv Electrophysiol 8:289–295CrossRefGoogle Scholar
  36. 36.
    Schmidt G Malik M et al (2000) Heart rate turbulence in post-MI patients on and off beta-blockers. Pacing Clin Electrophysiol 23:II-619Google Scholar
  37. 37.
    Jeron A, Holmer S et al (2003) Association of the heart rate turbulence with classic risk stratification parameters in postmyocardial infarction patients. Ann Noninv Electrophysiol 8:296–301CrossRefGoogle Scholar
  38. 38.
    Lin LY, Hwang JJ et al (2004) Restoration of heart rate turbulence by titrated beta-blocker therapy in patients with advanced congestive heart failure: positive correlation with enhanced vagal modulation of heart rate. J Cardiovasc Electrophysiol 15:752–756PubMedCrossRefGoogle Scholar
  39. 39.
    Echt DS, Liebson PR et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med 324:781–788PubMedCrossRefGoogle Scholar
  40. 40.
    Barthel P et al (2003) Risk stratification after acute myocardial infarction by heart rate turbulence. Circulation 108:1221–1226PubMedCrossRefGoogle Scholar
  41. 41.
    Malik M, Schmidt G et al (1999) Heart rate turbulence is a post-infarction mortality predictor which is independent of and additive to other recognised risk factors. Pacing Clin Electrophysiol 22:II-741CrossRefGoogle Scholar
  42. 42.
    Makikallio TH, Barthel P et al (2005) Prediction of sudden cardiac death after acute myocardial infarction: role of Holter monitoring in the modern treatment era. Eur Heart J 26:762–769PubMedCrossRefGoogle Scholar
  43. 43.
    Moore RK et al (2006) Heart rate turbulence and death due to cardiac decompensation in patients with chronic heart failure. Eur J Heart Fail 8:585–590PubMedCrossRefGoogle Scholar
  44. 44.
    Zareba W, Karcz M et al (2002) Heart rate turbulence, variability, and dynamics in nonischemic dilated cardiomyopathy. Circulation 106(Suppl):2977Google Scholar
  45. 45.
    Koyama J, Watanabe J et al (2002) Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure. Circ J 66:902–907PubMedCrossRefGoogle Scholar
  46. 46.
    Sredniawa B et al (2005) Methods of assessment and clinical relevance of QT dynamics. Indian Pacing Electrophysiol J 5:221–232PubMedGoogle Scholar
  47. 47.
    Milliez P, Coumel P et al (2005) Usefulness of ventricular repolarization dynamicity in predicting arrhythmic deaths in patients with ischemic cardiomyopathy (from the European Myocardial Infarct Amiodarone Trial). Am J Cardiol 95:821–826PubMedCrossRefGoogle Scholar
  48. 48.
    Chauan VS, Krahn AD et al (2002) Sex differences in QTc interval and QT dispersion: dynamics during exercise and recovery in healthy subjects. Am Heart J 144(5):858–864CrossRefGoogle Scholar
  49. 49.
    Berger RD, Kasper EK et al (1997) Beat-to-beat QT interval variability novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96:1557–1565PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Antonio Vincenti
    • 1
  • Stefano Pedretti
    • 1
  1. 1.Arrhythmology Unit, Cardiac/Thoracic/Vascular DepartmentSan Gerardo HospitalMonzaItaly

Personalised recommendations