Advertisement

CT and CT Nuclear Imaging of the Heart

  • P. A. Kaufmann
  • H. Alkadhi

Abstract

Over the past decades, conventional coronary angiography has been the only accepted ‘gold standard’ method for clinical imaging of coronary artery disease (CAD). However, coronary angiography is costly, causes patient discomfort, and is associated with a small but distinct procedure-related morbidity (1.5%) and mortality (0.15%). Moreover, the accuracy of coronary angiography is severely hampered by significant intraobserver as well as interobserver variability in defining the anatomic relevance of stenoses (up to 50%) [1, 2] — a problem that is underlined by the poor correlation with post-mortem coronary pathology findings [3, 4]. In addition, angiographic findings are unable to predict the physiologic relevance of a coronary stenosis [2, 5, 6, 7, 8].

Keywords

Coronary Angiography Myocardial Perfusion Imaging Left Anterior Descend Compute Tomography Coronary Angiography Right Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galbraith JE, Murphy ML, Desoyza N (1981) Coronary angiogram interpretation: interobserver variability. JAMA 240:2053–2059CrossRefGoogle Scholar
  2. 2.
    White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824PubMedCrossRefGoogle Scholar
  3. 3.
    Vlodaver Z, Frech R, Van Tassel RA, Edwards JE (1973) Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation 47:162–169PubMedGoogle Scholar
  4. 4.
    Arnett EN, Isner JM, Redwood DR et al (1979) Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Int Med 91:350–356PubMedGoogle Scholar
  5. 5.
    Zijlstra F, van O J, Reiber JH, Serruys PW (1987) Does the quantitative assessment of coronary artery dimensions predict the physiologic significance of a coronary stenosis? Circulation 75:1154–1161PubMedGoogle Scholar
  6. 6.
    Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342PubMedGoogle Scholar
  7. 7.
    Pijls NH, De B B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708PubMedCrossRefGoogle Scholar
  8. 8.
    Bech GJ, De Bruyne B, Bonnier HJ et al (1998) Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol 31:841–847PubMedCrossRefGoogle Scholar
  9. 9.
    Maier W, Abay M, Cook S et al (2005) The 2002 European registry of cardiac catheter interventions. Int J Cardiol 113:299–304PubMedCrossRefGoogle Scholar
  10. 10.
    Achenbach S, Daniel WG (2001) Noninvasive coronary angiography-an acceptable alternative? N Engl J Med 345:1909–1910PubMedCrossRefGoogle Scholar
  11. 11.
    Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  12. 12.
    Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385PubMedCrossRefGoogle Scholar
  13. 13.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dualsource CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  14. 14.
    Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410PubMedCrossRefGoogle Scholar
  15. 15.
    Alkadhi H, Wildermuth S, Bettex DA et al (2006) Mitral regurgitation: quantification with 16-detector row CT-initial experience. Radiology 238:454–463PubMedCrossRefGoogle Scholar
  16. 16.
    Alkadhi H, Wildermuth S, Plass A et al (2006) Aortic stenosis: comparative evaluation of 16-detector row CT and echocardiography. Radiology 240:47–55PubMedCrossRefGoogle Scholar
  17. 17.
    Haller S, Kaiser C, Buser P et al (2006) Coronary artery imaging with contrast-enhanced MDCT: extracardiac findings. AJR Am J Roentgenol 187:105–110PubMedCrossRefGoogle Scholar
  18. 18.
    Smith SC Jr, Dove JT, Jacobs AK et al (2001) ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines) — executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty). J Am Coll Cardiol 37:2215–2239PubMedCrossRefGoogle Scholar
  19. 19.
    Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 108:1404–1418PubMedCrossRefGoogle Scholar
  20. 20.
    Schindler TH, Magosaki N, Jeserich M et al (1999) Fusion imaging: combined visualization of 3D reconstructed coronary artery tree and 3D myocardial scintigraphic image in coronary artery disease. Int J Card Imaging 15:357–368PubMedCrossRefGoogle Scholar
  21. 21.
    Schindler TH, Magosaki N, Jeserich M et al (2000) 3D assessment of myocardial perfusion parameter combined with 3D reconstructed coronary artery tree from digital coronary angiograms. Int J Card Imaging 16:1–12PubMedCrossRefGoogle Scholar
  22. 22.
    Faber TL, Santana CA, Garcia EV et al (2004) Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation. J Nucl Med 45:745–753PubMedGoogle Scholar
  23. 23.
    Anonymous (2006) 2006 Image of the Year: focus on cardiac SPECT/CT. J Nucl Med 47:14N–15NGoogle Scholar
  24. 24.
    Gaemperli O, Schepis T, Kaufmann PA (2007) SPECT-CT fusion imaging integrating anatomy and perfusion. Eur Heart J 28:145PubMedCrossRefGoogle Scholar
  25. 25.
    Namdar M, Hany TF, Koepfli P et al (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46:930–935PubMedGoogle Scholar
  26. 26.
    Hoffmann U, Nagurney JT, Moselewski F et al (2006) Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 114:2251–2260PubMedCrossRefGoogle Scholar
  27. 27.
    Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833PubMedCrossRefGoogle Scholar
  28. 28.
    Wijns W (2005) The diagnosis of coronary artery disease: in search of a ‘one-stop shop’? J Nucl Med 46:904–905PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • P. A. Kaufmann
    • 1
  • H. Alkadhi
    • 2
  1. 1.Nuclear Medicine and Cardiology, Department of Medical RadiologyUniversity HospitalZurichSwitzerland
  2. 2.Institute of Diagnostic Radiology, Department of Medical RadiologyUniversity HospitalZurichSwitzerland

Personalised recommendations