The pressure-volume curve

  • V. R. Cagido
  • W. A. Zin
Conference paper


Since it was first described, the pressure-volume (P–V) curve has been used as a physiological method to describe the mechanical properties of the respiratory system in health and disease [1]. In mechanically ventilated patients, the P–V curve is an interesting tool that can be used at the bedside to help in the diagnosis, follow-up and prognosis of lung disease, and also in the setting of ventilatory parameters to help in determination of the optimal positive end-expiratory pressure (PEEP) level and quantification of the alveolar recruitment [2]. However, after decades of research on P–V curves, there is still wide-ranging discussion on how to interpret it.


Chest Wall Acute Lung Injury Acute Respiratory Distress Syndrome Versus Curve Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahn H, Fenn WO, Otis AB (1946) The pressure-volume diagram of the thorax and the lung. Am J Physiol 146:161–178Google Scholar
  2. 2.
    Harris RS (2005) Pressure-volume curves of the respiratory system. Respir Care 50(1):78–98PubMedGoogle Scholar
  3. 3.
    Lu Q, Rouby JJ (2000) Measurement of pressure-volume curves in patients on mechanical ventilation: methods and significance. Crit Care 4(2):91–100PubMedCrossRefGoogle Scholar
  4. 4.
    Maggiore SM, Richard J-C, Brochard L (2003) What has been learnt from P/V curves in patients with acute lung injury/acute respiratory distress syndrome. Eur Respir J 22:Suppl 42, 22s–26sCrossRefGoogle Scholar
  5. 5.
    Marini JJ (1990) Lung mechanics in the adult respiratory distress syndrome. Recent conceptual advances and implications for management. Clin Chest Med 11(4):673–690PubMedGoogle Scholar
  6. 6.
    Agostini E, Hyatt RE (1986) Static behavior of the respiratory system. In: Geiger SR (ed) Handbook of physiology. American Physiological Society, Bethesda, pp 113–130Google Scholar
  7. 7.
    Mead J, Whittenberger JL, Radford EP (1957) Surface tension as a factor in pulmonary volume-pressure hysteresis. J Appl Physiol 10(2):191–196PubMedGoogle Scholar
  8. 8.
    Radford EP Jr (1964–1965) Static mechanical properties of mammalian lungs. In: Fenn WO (ed) Handbook of physiology. American Physiological Society, Bethesda, pp 429–449Google Scholar
  9. 9.
    Matamis D, Lemaire F, Harf A (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66PubMedCrossRefGoogle Scholar
  10. 10.
    Levy P, Similowski T, Corbeil C (1989) A method for studying the static volume-pressure curves of the respiratory system during mechanical ventilation. J Crit Care 4:83–89CrossRefGoogle Scholar
  11. 11.
    Suratt PM, Owens DH, Kilgore WT et al (1980) A pulse method of measuring respiratory system compliance. J Appl Physiol 49:1116–1121PubMedGoogle Scholar
  12. 12.
    Suratt PM, Owens DH (1981) A pulse method of measuring respiratory system compliance in ventilated patients. Chest 80:34–38PubMedCrossRefGoogle Scholar
  13. 13.
    Ranieri VM, Zhang H, Mascia L et al (2000) Pressure time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328PubMedCrossRefGoogle Scholar
  14. 14.
    Jonson B, Richard J-C, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  15. 15.
    Servillo G, Svantesson C, Beydon L et al (1997) Pressure-volume curves in acute respiratory failure. Automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155:1629–1636PubMedGoogle Scholar
  16. 16.
    Lu Q, Vieira S, Richecoeur J (1999) A simple automated method for measuring pressure-volume curve during mechanical ventilation. Am J Respir Crit Care Med 159:275–282PubMedGoogle Scholar
  17. 17.
    Adams AB, Cakar N, Marini JJ (2001) Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care 46:686–693PubMedGoogle Scholar
  18. 18.
    Stahl CA, Möller K, Schumann S et al (2006) Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med 34 34(8):2090–2098CrossRefGoogle Scholar
  19. 19.
    Terragni PP, Rosboch GL, Lisi A et al (2003) How respiratory system mechanics may help in minimizing ventilator-induced lung injury in ARDS patients. Eur Respir J 22Suppl 42, 15s–21sCrossRefGoogle Scholar
  20. 20.
    Rouby JJ, Lu Q, Vieira S (2003) Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J 22Suppl.42, 27s–36sCrossRefGoogle Scholar
  21. 21.
    Zin WA, Milic-Emili J (2005) Esophageal pressuremeasurement. In: Hamid Q, Shannon J, Martin J, (eds) Physiologic basis of pulmonary diseases. BC Decker, Hamilton, Canada, pp 639–647Google Scholar
  22. 22.
    Baydur A, Behrakis PK, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791PubMedGoogle Scholar
  23. 23.
    Vieillard-Baron A, Prin S, Schmitt JM et al (2002) Pressure-volume curves in acute respiratory distress syndrome: clinical demonstration of the influence of expiratory flow limitation on the initial slope. Am J Respir Care Med 165:1107–1112Google Scholar
  24. 24.
    Hickling GK (2002) Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 8:32–38PubMedCrossRefGoogle Scholar
  25. 25.
    Kallet RH (2003) Pressure-volume curves in the management of acute respiratory distress syndrome. Respir Care Clin N Am 9(3):321–341PubMedCrossRefGoogle Scholar
  26. 26.
    Barbas CSV, Matos GFJ, Okamoto V et al (2003) Lung recruitment maneuvers in acute respiratory distress syndrome. Respir Care Clin N Am 9(4):401–418PubMedCrossRefGoogle Scholar
  27. 27.
    Suter PM, Fairley B, Isenberg MD (1975) Optimal end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292(6):284–289PubMedCrossRefGoogle Scholar
  28. 28.
    Peták F, Habre W, Babik B et al (2006) Crackle-sound recording to monitor airway closure and recruitment in ventilated pigs. Eur Respir J 27:808–816PubMedCrossRefGoogle Scholar
  29. 29.
    Kim HY, Lee KS, Kang EH et al (2004) Acute respiratory distress syndrome. Computed tomography findings and their applications to mechanical ventilation therapy. J Comput Assist Tomogr 28(5):686–696PubMedCrossRefGoogle Scholar
  30. 30.
    Bugedo G, Bruhn A, Hernandez G et al (2003) Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury. Intensive Care Med 29:218–225PubMedGoogle Scholar
  31. 31.
    Hickling KG (1998) The pressure-volume curve is modified by recruitment: a mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202PubMedGoogle Scholar
  32. 32.
    Maggiore SM, Jonson B, Richard J-C et al (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury. Comparison with the lower inflexion point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801PubMedGoogle Scholar
  33. 33.
    Ranieri VM, Brienza N, Santostasi S et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:1082–1091PubMedGoogle Scholar
  34. 34.
    Mergoni M, Martelli A, Volpi A et al (1997) Impact of positive end-expiratory pressure on chest wall and lung pressure volume curve in acute respiratory failure. Am J Respir Crit Care Med 156:846–854PubMedGoogle Scholar
  35. 35.
    Mutoh T, Lamm WJE, Emdree LJ et al (1992) Volume infusion produces abdominal distension, lung compression, and chest wall stiffening in pigs. J Appl Physiol 72:575–582PubMedCrossRefGoogle Scholar
  36. 36.
    Fernandez R, Mancebo J, Blanch L et al (1990) Intrinsic PEEP on static pressure-volume curves. Intensive Care Med 16:233–236PubMedCrossRefGoogle Scholar
  37. 37.
    Jonson B, Svantesson C (1999) Elastic pressure-volume curves: what information do they convey? Thorax 54:82–87PubMedCrossRefGoogle Scholar
  38. 38.
    Benito S, LeMaire F (1990) Pulmonary pressure-volume relationship in acute respiratory distress syndrome in adults: role of positive end-expiratory pressure. J Crit Care 5:27–34CrossRefGoogle Scholar
  39. 39.
    Vieira S, Puybasset L, Lu Q et al (1999) A scanographic assessment of pulmonary morphology in acute lung injury: signification of the lower inflexion point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159:1612–1623PubMedGoogle Scholar
  40. 40.
    Puybasset L, Cluzel P, Gusman P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869PubMedCrossRefGoogle Scholar
  41. 41.
    Mentzelopoulos SD, Sigala J, Roussos C et al (2006) Static pressure-volume curves and body posture in severe chronic bronchitis. Eur Respir J 28:165–173PubMedCrossRefGoogle Scholar
  42. 42.
    Venegas JG, Harris RS, Simon BA (1998) A comprhensive equation for the pulmonary pressure-volume curve. J Appl Physiol 84:389–395PubMedGoogle Scholar
  43. 43.
    Gattinoni L, Eleonora C, Caironi P (2005) Monitorinıg of pulmonary mechanics in acute respiratory distress syndrome to titrate therapy. Curr Opin Crit Care 11:252–258PubMedCrossRefGoogle Scholar
  44. 44.
    Amato MBP, Barbas CSV, Medeiros DM et al (1998) Effect of prospective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  45. 45.
    Barbas CSV (2003) Lung recruitment maneuvers in acute respiratory distress syndrome and facilitating resolution. Crit Care Med 31(4) Suppl s265–s271CrossRefGoogle Scholar
  46. 46.
    Knust PWA, Bohm SH, de Anda GV et al (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183CrossRefGoogle Scholar
  47. 47.
    Rimensberger PC, Cox PN, Frndova H et al (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1652PubMedCrossRefGoogle Scholar
  48. 48.
    Albaiceta GM, Luyando LH, Parra D et al (2005) Inspiratory vs. expiratory pressure-volume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 31:1370–1378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • V. R. Cagido
    • 1
  • W. A. Zin
    • 1
  1. 1.Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroBrazil

Personalised recommendations