Focus on entropy and surgical stress index

  • M. Sorbello
  • S. Mangiameli
  • A. Gullo
Conference paper


According to the words of Dr Bigelow, one of the most important goals achieved by Dr Morton’s discovery of anaesthesia was, as is obvious from the point of view of a surgeon, that pain was abolished from surgery. This is quite true when anaesthesia is in the skilled hands of an able anaesthetist; the same cannot be said of the idea that science has control of pain.


Respiratory Sinus Arrhythmia State Entropy Autonomic Response Bispectral Index Sevoflurane Anaesthesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urban BW (2002) Current assessment of targets and theories of anaesthesia. Br J Anaesth 89:167–183PubMedCrossRefGoogle Scholar
  2. 2.
    Eger IE II, Sonner JM (2006) Anesthesia defined (Gentlemen this is no humbug). Best Pract Res Clin Anaesthesiol 20(1):23–29PubMedCrossRefGoogle Scholar
  3. 3.
    John ER, Prichep LS (2005) The anesthetic cascade. A theory of how anesthesia suppresses consciousness. Anesthesiology 102:447–471PubMedCrossRefGoogle Scholar
  4. 4.
    Lydic R, Baghdoyan HA (2005) Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology 103:1268–1295PubMedCrossRefGoogle Scholar
  5. 5.
    Jones JG, Aggarwal SK (2001) Monitoring the depth of anaesthesia. In: Ghonheim MM (ed) Awareness during anaesthesia. Butterworth-Heinemann, pp 69–92Google Scholar
  6. 6.
    Rampil IJ (2000) Mechanisms and sites of action of general anaesthetics, memory and awareness in anaesthesia. In: Jordan C, Vaughan DJA, Newton DEF (eds) IV. Proceedings of the Fourth International Symposiumon Memory and Awareness in Anaesthesia. Imperial College Press, London, pp 223–231Google Scholar
  7. 7.
    Prys-Roberts C (1987) Anaesthesia: a practical or impossible construct? (Editorial). Br J Anaesth 59:1341–1342PubMedCrossRefGoogle Scholar
  8. 8.
    Antognini JF, Carstens E, Sudo M, Sudo S (2000) Isoflurane depresses electroencephalographic and medial thalamic responses to noxious stimulation via an indirect spinal action. Anesth Analg 91(5):1282–1288PubMedCrossRefGoogle Scholar
  9. 9.
    Iselin-Chaves A, Willems SJ, Jermann FC et al (2005) Investigation of implicit memory during isoflurane anesthesia for elective surgery using the process dissociation procedure. Anesthesiology 103:925–933PubMedCrossRefGoogle Scholar
  10. 10.
    Ghoneim M (2000) Awareness during anesthesia. Anesthesiology 92:597–602PubMedCrossRefGoogle Scholar
  11. 11.
    Sandin R, Enlund G, Samuelsson P, Lennmarken C (2000) Awareness during anaesthesia: a prospective case study. Lancet 355:707–711PubMedCrossRefGoogle Scholar
  12. 12.
    Sebel P, Bowdle T, Ghoneim M et al (2004) The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg 99:833–839PubMedCrossRefGoogle Scholar
  13. 13.
    Lennmarken C, Bildfors K, Enlund G et al (2002) Victims of awareness. Acta Anaesthesiol Scand 46:229–231PubMedCrossRefGoogle Scholar
  14. 14.
    Domino KB, Poster KL, Kaplan RA, Cheney FW (1999) Awareness during anesthesia: a closed claims analysis. Anesthesiology 90:1053–1061PubMedCrossRefGoogle Scholar
  15. 15.
    Myles PS, Lesile K, McNeil J et al (2004) Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomized controlled trial. Lancet 363:1757–1763PubMedCrossRefGoogle Scholar
  16. 16.
    Practice advisory for intraoperative awareness and brain function monitoring (approved by the house of delegates on October 25, 2005) A report by the American Society of Anesthesiologists Task Force on Intraoperative Awareness. www.asahq.orgGoogle Scholar
  17. 17.
    Tonner HP, Scholz J (2006) The sinking brain: how to measure consciousness in anaesthesia. Best Pract Res Clin Anaesthesiol 20(1):1–9PubMedCrossRefGoogle Scholar
  18. 18.
    Struys MRF, Mortier EP, De Smet T (2006) Closed loops in anaesthesia. Best Pract Res Clin Anaesthesiol 20(1):211–220PubMedCrossRefGoogle Scholar
  19. 19.
    Guedel AE (1937) Inhalational anesthesia: a fundamental guide. Macmillan, New YorkGoogle Scholar
  20. 20.
    Hadzidiakos D, Nowak A, Laudahn N et al (2006) Subjective assessment of depth of anaesthesia by experienced and unexperienced anaesthetists. Eur J Anaesthesiol 23:292–299PubMedCrossRefGoogle Scholar
  21. 21.
    Chernik DA, Gillings D, Laine H et al (1990) Validity and reliability of the Observer’s Assessment of Alertness/Sedation Scale: study with intravenous midazolam. J Clin Psychopharmacol 10:244–251PubMedCrossRefGoogle Scholar
  22. 22.
    Russell IF (1993) Midazolam-alfentanil: an anaesthetic? An investigation using the isolated forearm technique. Br J Anaesth 70:42–46PubMedCrossRefGoogle Scholar
  23. 23.
    Tunstall ME (1877) Detecting wakefulness during general anaesthesia for caesarean section. BMJ I:13–21Google Scholar
  24. 24.
    Caton R (1875) The electrical currents of the brain. BMJ II:278Google Scholar
  25. 25.
    Gibbs FA, Gibbs EL, Lennox WG (1937) Effect on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med 60:154–156Google Scholar
  26. 26.
    Gurman GM (1994) Assessment of depth of general anaesthesia. Observations on processed EEG and spectral edge frequency. Int J Clin Monit Comput 11:185–189PubMedCrossRefGoogle Scholar
  27. 27.
    Sigl JC, Chamoun NG (1994) An introduction to bispectral analysis for the electroencefalogram. J Clin Monit 10:392–404PubMedCrossRefGoogle Scholar
  28. 28.
    Schultz B, Grouven U, Schultz A (2002) Automatic classification algorithms of the EEG monitor Narcotrend for routinely recorded EEG data from general anaesthesia: a validation study. Biomed Tech (Berl) 47:9–13CrossRefGoogle Scholar
  29. 29.
    White PF (2006) Use of cerebral monitoring during anaesthesia: effect on recovery profiles. Best Pract Res Clin Anaesthesiol 20(1):181–189PubMedCrossRefGoogle Scholar
  30. 30.
    Drover DR, Lemmens HJ, Pierce ET et al (2002) Patient state index. titration of delivery and recovery from propofol, alfentanil, and nitrous oxide anaesthesia. Anesthesiology 97:82–89PubMedCrossRefGoogle Scholar
  31. 31.
    Vakkuri A, Yli-Hankala A, Talja P et al (2004) Time-frequency-balanced spectral entropy as a measure of anesthetic drug in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 48:145–153PubMedCrossRefGoogle Scholar
  32. 32.
    Kreuer S, Wilhelm W (2006) The Narcotrend monitor. Best Pract Res Clin Anaesthesiol 20(1):111–119PubMedCrossRefGoogle Scholar
  33. 33.
    Smith WD, Dutton RC, Smith NT (1996) Measuring the performance of anesthetic depth indicators. Anesthesiology 84:38–51PubMedCrossRefGoogle Scholar
  34. 34.
    Glass PS, Bloom M, Kearse L et al (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86:836–847PubMedCrossRefGoogle Scholar
  35. 35.
    Rampil IJ, Mason P, Singh H (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78:707–712PubMedCrossRefGoogle Scholar
  36. 36.
    Dahaba AA (2005) Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth Analg 101(3):765–773PubMedCrossRefGoogle Scholar
  37. 37.
    Messner M, Beese U, Romsto J et al (2003) The Bispectral Index declines during neuromuscular block in fully awake persons. Anesth Analg 97:488–491PubMedCrossRefGoogle Scholar
  38. 38.
    Litvan H, Jensen EW, Revuelta M et al (2002) Comparison of auditory evoked potentials and the A-line ARX Index for monitoring the hypnotic level during sevoflurane and propofol induction. Acta Anaesthesiol Scand 46:245–251PubMedCrossRefGoogle Scholar
  39. 39.
    Milne SE, Kenny GN, Schraag S (2003) Propofol sparing effect of remifentanil using closed-loop anaesthesia. Br J Anaesth 90:623–629PubMedCrossRefGoogle Scholar
  40. 40.
    Plourde G (2006) Auditory evoked potentials. Best Pract Res Clin Anaesthesiol 20(1):129–136PubMedCrossRefGoogle Scholar
  41. 41.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:623–656Google Scholar
  42. 42.
    Viertio-Oja H, Maja V, Sarkela M et al (2004) Description of the entropy algorithm as applied in the Datex-Ohmeda S/5 entropy module. Acta Anaesthesiol Scand 48:154–161PubMedCrossRefGoogle Scholar
  43. 43.
    Vakkuri A, Yli-Hankala A, Talja P et al (2004) Time-frequency-balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 48:145–153PubMedCrossRefGoogle Scholar
  44. 44.
    Soto R, Nguyen TC, Smith RA (2005) A comparison of bispectral index and entropy, or how to misinterpret both. Anesth Analg 100:1059–1061PubMedCrossRefGoogle Scholar
  45. 45.
    Paul F. White PF, Tang J et al (2006) A comparison of state and response entropy versus bispectral index values during the perioperative period. Anesth Analg 102:160–167CrossRefGoogle Scholar
  46. 46.
    Bein B (2006) Entropy. Best Pract Res Clin Anaesthesiol 20(1):101–109PubMedCrossRefGoogle Scholar
  47. 47.
    Vakkuri A, Yli-Hankala A, Sandin R et al (2005) Spectral entropy monitoring is associated with reduced propofol use and faster emergence in propofol-nitrous oxide-alfentanil anesthesia. Anesthesiology 103:274–279PubMedCrossRefGoogle Scholar
  48. 48.
    Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical review. Brain Res 1000:40–56PubMedCrossRefGoogle Scholar
  49. 49.
    van Gils M, Korhonen I, Yli-Hankala A (2002) Methods for assessing adequacy of anesthesia. Crit Rev Biomed Eng 30:99–130PubMedCrossRefGoogle Scholar
  50. 50.
    Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85:109–117PubMedCrossRefGoogle Scholar
  51. 51.
    Parker SD, Breslow MJ, Frank SM et al (1995) Catecholamine and cortisol responses to lower extremity revascularization. Correlation with outcome variables. Crit Care Med 23:1954–1961PubMedCrossRefGoogle Scholar
  52. 52.
    Snow J (1847) On the inhalation of the vapour of ether in surgical operations: containing a description of the various stages of etherisation, and a statement of the result of nearly eighty operations in which ether has been employed in St. George’s and University College Hospitals. John Churchill, London, p 53Google Scholar
  53. 53.
    Macrae WA (2001) Chronic pain after surgery. Br J Anaesth 87:88–98PubMedCrossRefGoogle Scholar
  54. 54.
    Woolf CJ (1995) Somatic pain: pathogenesis and prevention. Br J Anaesth 75:169–176PubMedGoogle Scholar
  55. 55.
    Kehlet H (1997) Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth 78:606–617PubMedGoogle Scholar
  56. 56.
    Bonnet F, Marret E (2005) Influence of anaesthetic and analgesic techniques on outcome after surgery. Br J Anaesth 95(1):52–58PubMedCrossRefGoogle Scholar
  57. 57.
    Gurman GM, Popescu M, Weksler N et al (2003) Influence of the cortical electrical activity level during general anaesthesia on the severity of immediate postoperative pain in the morbidly obese. Acta Anaesthesiol Scand 47:804–808PubMedCrossRefGoogle Scholar
  58. 58.
    Yli-Hankala A (2003) Will enough isoflurane during surgery replace morphine after surgery? Acta Anaesthesiol Scand 47:785–786PubMedCrossRefGoogle Scholar
  59. 59.
    Kehlet H, Willmore DW (2002) Multimodal strategies to improve surgical outcome. Am J Surg 183:630–644PubMedCrossRefGoogle Scholar
  60. 60.
    Kehlet H, Dahl JB (2003) Anaesthesia, surgery, and challenges in postoperative recovery. Lancet 362:1921–1928PubMedCrossRefGoogle Scholar
  61. 61.
    Carli F, Mayo N, Kluben K et al (2002) Epidural analgesia enhances functional exercise capacity and health-related quality of life after colonic surgery: results of a randomized trial. Anesthesiology 97:540–549PubMedCrossRefGoogle Scholar
  62. 62.
    Hsu YW, Somma J, Hung Y et al (2005) Predicting postoperative pain by preoperative pressure pain assessment. Anesthesiology 103:613–618PubMedCrossRefGoogle Scholar
  63. 63.
    Kalkman CJ, Visser K, Moen J et al (2003) Preoperative prediction of severe postoperative pain. Pain 105:415–423PubMedCrossRefGoogle Scholar
  64. 64.
    Werner MU, Duun P, Kehlet H (2004) Prediction of postoperative pain by preoperative nociceptive responses to heat stimulation. Anesthesiology 100:115–119PubMedCrossRefGoogle Scholar
  65. 65.
    Hansen Eg, Duedahl Th, Rømsing J et al (2005) Intra-operative remifentanil might influence pain levels in the immediate post operative period after major abdominal surgery. Acta Anaesthesiol Scand 49:1464–1470PubMedGoogle Scholar
  66. 66.
    Henneberg SW, Rosenborg D, Weber Jensen E et al (2005) Peroperative depth of anaesthesia may influence postoperative opioid requirements. Acta Anaesthesiol Scand 49:293–296PubMedCrossRefGoogle Scholar
  67. 67.
    Xue Q, Chen P, Yu B (2005) Prediction depth of hypnosis by entropy during propofol anesthesia. Anesthesiology 103:A873Google Scholar
  68. 68.
    Wheeler P, Hoffman WE, Baugham VL, Koenig H (2005) Response entropy increases during painful stimulation. J Neurosurg Anesthesiol 17:86–90PubMedCrossRefGoogle Scholar
  69. 69.
    Feld J, Hoffman WE (2006) Response entropy is more reactive than bispectral index during laparoscopic gastric banding. J Clin Monit Comput 20(4):229–234PubMedCrossRefGoogle Scholar
  70. 70.
    Sorbello M, Zingale SF, Pulvirenti M et al (2005) Effect of conventional MacIntosh laryngoscopy vs Glidescope® laryngoscopy on Entropy® measurement in young subjects. Minerva Anestesiol 71(10 Suppl 2)Google Scholar
  71. 71.
    Valjus M, Ahonen J, Jokela R, Korttila K (2006) Response Entropy is not more sensitive than State Entropy in distinguishing the use of esmolol instead of remifentanil in patients undergoing gynaecological laparoscopy. Acta Anaesthesiol Scand 50:32–39PubMedCrossRefGoogle Scholar
  72. 72.
    Hoymork SC, Raeder J, Grimsmo B, Steen PA (2003) Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br J Anaesth 91:773–780PubMedCrossRefGoogle Scholar
  73. 73.
    Takamatsu I, Ozaki M, Kazama T (2006) Entropy indices vs the bispectral index for estimating nociception during sevoflurane anaesthesia. Br J Anaesth 96(5):620–626PubMedCrossRefGoogle Scholar
  74. 74.
    Bruhn J, Bouillon TW, Radulescu L et al (2003) Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of ‘anesthetic depth’ during coadministration of propofol and remifentanil. Anesthesiology 98:621–627PubMedCrossRefGoogle Scholar
  75. 75.
    Segawa H, Mori K, Murakawa M et al (1998) Isoflurane and sevoflurane augment norepinephrine responses to surgical noxious stimulation in human. Anesthesiology 89:1407–1413PubMedCrossRefGoogle Scholar
  76. 76.
    Lovick TA (1986) Analgesia and the cardiovascular changes evoked by stimulating neurones in the ventrolateral medulla in rats. Pain 25:259–268PubMedCrossRefGoogle Scholar
  77. 77.
    Pomeranz B, Macaulay RJ, Caudill MA et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151–H153PubMedGoogle Scholar
  78. 78.
    Martin Cancho MF, Carrasco-Jimenez S, Lima JR et al (2006) The measurement of neurovegetative activity during anesthesia and surgery in swine: an evaluation of different techniques. Anesth Analg 102:1333–1340PubMedCrossRefGoogle Scholar
  79. 79.
    Pomfrett CJ, Barrie JR, Healy TE (1993) Respiratory sinus arrhythmia: an index of light anaesthesia. Br J Anaesth 71(2):212–217PubMedCrossRefGoogle Scholar
  80. 80.
    Heaney M, Kevin LG, Manara AR et al (2004) Ocular microtremor during general anesthesia: results of a multicenter trial using automated signal analysis. Anesth Analg 99:775–780PubMedCrossRefGoogle Scholar
  81. 81.
    Shimoda O, Ikuta Y, Sakamoto M et al (1998) Skin vasomotor reflex predicts circulatory responses to laryngoscopy and intubation. Anesthesiology 88(2):297–304PubMedCrossRefGoogle Scholar
  82. 82.
    Luginbuhl M, Reichlin F, Sigurdsson G et al (2002) Prediction of the haemodynamic response to tracheal intubation: comparison of laser-Doppler skin vasomotor reflex and pulse wave reflex. Br J Anaesth 89:389–397PubMedCrossRefGoogle Scholar
  83. 83.
    Leslie K, Sessler DI, Smith WD et al (1996) Prediction of movement during propofol/nitrous oxide anesthesia: Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. Anesthesiology 84:52–63PubMedCrossRefGoogle Scholar
  84. 84.
    Seitsonen ERJ, Korhonen IKJ, Van Gils MJ et al (2005) EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiol Scand 49:284–292PubMedCrossRefGoogle Scholar
  85. 85.
    Rantanen M, Yli-Hankala A, van Gils M et al (2006) Novel multiparameter approach for measurement of nociception at skin incision during general anaesthesia. Br J Anaesth 96(3):367–376PubMedCrossRefGoogle Scholar
  86. 86.
    Sorbello M, Mangiameli S, Gullo A et al. In pressGoogle Scholar
  87. 87.
    Luginbuhl M, Rufenacht M, Korhonen I et al (2006) Stimulation induced variability of pulse plethysmography does not discriminate responsiveness to intubation. Br J Anaesth 96:323–329PubMedCrossRefGoogle Scholar
  88. 88.
    Schramm WM, Bartunek A, Gilly H (1997) Effect of local limb temperature on pulse oximetry and the plethysmographic pulse wave. Int J Clin Monit Comput 14:17–22PubMedCrossRefGoogle Scholar
  89. 89.
    Marszalek A (2000) The use of selected methods in assessing peripheral circulation of blood. Med Pr 51:299–309PubMedGoogle Scholar
  90. 90.
    Talke P, Stapelfeldt C, Lobo E et al (2005) Alpha-2B adrenoceptor polymorphism and peripheral vasoconstriction. Pharmacogenet Genomics 15:357–363PubMedGoogle Scholar
  91. 91.
    Blanc FB, Haig M, Troli M, Sauve B (1993) Computerized photoplethysmography of the finger. Can J Anaesth 40:271–278PubMedGoogle Scholar
  92. 92.
    Yu J, Ogawa K, Tokinaga Y et al (2004) The vascular relaxing effects of sevoflurane and isoflurane are more important in hypertensive than in normotensive rats. Can J Anesth 51(10):979–985PubMedCrossRefGoogle Scholar
  93. 93.
    Ebert TJ, Ficke DJ, Arain SR et al (2005) Vasodilation from sulfentanil in humans. Anesth Analg 101:1677–1680PubMedCrossRefGoogle Scholar
  94. 94.
    O’Keefe RJ, Domalik-Wawrzynski L, Guerrero JL et al (1987) Local and neurally mediated effects of sufentanil on canine muscle vascular resistance. J Pharmacol Exp Ther 242:699–706PubMedGoogle Scholar
  95. 95.
    Noseir RK, Ficke DJ, Kundu A et al (2003) Sympathetic and vascular consequences from remifentanil in humans. Anesth Analg 96:1645–1650PubMedCrossRefGoogle Scholar
  96. 96.
    Nouraei SAR, Davies MR, Obholzer R et al (2006) Haemodynamic instability during thyroid surgery: a baroreflex-mediated neurogenic phenomenon? Anaesthesia 61:282–284PubMedCrossRefGoogle Scholar
  97. 97.
    Kern SE, Xie G, White JL, Egan TD (2004) Opioid-hypnotic synergy. Anesthesiology 100:1373–1381PubMedCrossRefGoogle Scholar
  98. 98.
    Jensen EW, Litvan H, Struys M, Martinez Vasquez P (2004) Pitfalls and challenges when assessing the depth of hypnosis during general anaesthesia by clinical signs and electronic indices. Acta Anaesthesiol Scand 48:1260–1267PubMedCrossRefGoogle Scholar
  99. 99.
    Bonhomme V, Hans P (2004) Monitoring depth of anaesthesia: is it worth the effort? Eur J Anaesthesiol 21(6):423–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • M. Sorbello
    • 1
  • S. Mangiameli
    • 2
  • A. Gullo
    • 2
  1. 1.Department of Anaesthesia and Intensive CareCatania University HospitalCataniaItaly
  2. 2.Department of Anaesthesia and Intensive Care, Postgraduate School of Anaesthesia and Intensive CareCatania University HospitalCataniaItaly

Personalised recommendations