Ventricular fibrillation and defibrillation: contemporary understanding of mechanisms

  • R. D. White


Before proceeding with a discussion of contemporary transthoracic defibrillation and the transition to biphasic waveforms, I will review the mechanisms of ventricular fibrillation (VF) and defibrillation. Though they are complex, much insight has been gained into these mechanisms, which facilitates an understanding of why defibrillation with well-designed biphasic waveforms has emerged from experimental observations into clinical practice.


Ventricular Fibrillation European Resuscitation Council Contemporary Understanding Defibrillation Shock Biphasic Waveform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scheinman MM, Keung E (2006) The year in clinical electrophysiology. J Am Coll Cardiol 47:1207–1213PubMedCrossRefGoogle Scholar
  2. 2.
    Jalife J (2000) Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 62:25–50PubMedCrossRefGoogle Scholar
  3. 3.
    Samie FH, Jalife J (2001) Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc Res 50:242–250PubMedCrossRefGoogle Scholar
  4. 4.
    Weiss JN, Chen PS, Qu Z et al (2000) Ventricular fibrillation: how do we stop the waves from breaking? Circ Res 87:1103–1107PubMedGoogle Scholar
  5. 5.
    Weiss JN, Chen PS, Qu Z et al (2002) Electrical restitution and cardiac fibrillation. J Cardiovasc Electrophysiol 13:292–295PubMedCrossRefGoogle Scholar
  6. 6.
    Ideker RE, Chattipakorn TN, Gray RA (2000) Defibrillation mechanisms: the parable of the blind men and the elephant. J Cardiovasc Electrophysiol 11:1008–1013PubMedCrossRefGoogle Scholar
  7. 7.
    Zipes DP, Fischer J, King RM et al (1975) Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 36:37–44PubMedCrossRefGoogle Scholar
  8. 8.
    Chen PS, Shibata N, Dixon EG et al (1986) Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation 73:1022–1028PubMedGoogle Scholar
  9. 9.
    Jones JL, Tovar OH (1996) The mechanism of defibrillation and cardioversion. Proc IEEE 84:392–403CrossRefGoogle Scholar
  10. 10.
    Tovar OH, Jones JL (1997) Relationship between “extension of refractoriness” and probability of successful defibrillation. Am J Heart Circ Physiol 272:H1011–1019Google Scholar
  11. 11.
    Dillon SM, Kwaku KF (1998) Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 9:529–552PubMedCrossRefGoogle Scholar
  12. 12.
    Dillon SM (1991) Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res 69:842–856PubMedGoogle Scholar
  13. 13.
    Kwaku KF, Dillon SM (1996) Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. Circ Res 79:957–973PubMedGoogle Scholar
  14. 14.
    Dillon SM (1992) Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart. Circulation 85:1865–1878PubMedGoogle Scholar
  15. 15.
    White RD (2002) New concepts in transthoracic defibrillation. Emerg Med Clin North Am 20:785–807PubMedCrossRefGoogle Scholar
  16. 16.
    Neunlist M, Tung L (1995) Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys J 68:2310–2322PubMedCrossRefGoogle Scholar
  17. 17.
    Jones JL, Jones RE, Milne KB (1994) Refractory period prolongation by biphasic defibrillator waveforms is associated with enhanced sodium current in a computer model of the ventricular action potential. IEEE Trans Biomed Eng 41:60–68PubMedCrossRefGoogle Scholar
  18. 18.
    Efimov IR, Aguel F, Cheng Y (2000) Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart Circ Physiol 279:H1055–1070PubMedGoogle Scholar
  19. 19.
    Efimov IR, Cheng Y, Van Wagoner DR et al (1998) Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 82:918–925PubMedGoogle Scholar
  20. 20.
    Efimov IR, Cheng Y, Yamanouchi Y, Tchou PJ (2000) Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol 11:861–868PubMedCrossRefGoogle Scholar
  21. 21.
    Efimov IR, Gray RA, Roth BJ (2000) Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 11:339–353PubMedCrossRefGoogle Scholar
  22. 22.
    Lindblom AE, Aguel F, Trayanova NA (2001) Virtual electrode polarization leads to reentry in the far field. J Cardiovasc Electrophysiol 12:946–956PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng Y, Mowrey KA, Van Wagoner DR et al (1999) Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res 85:1056–1066PubMedGoogle Scholar
  24. 24.
    Trayanova N, Skouibine K, Moore P (1998) Virtual electrode effects in defibrillation. Prog Biophys Mol Biol 69:387–403PubMedCrossRefGoogle Scholar
  25. 25.
    Gliner BE, Jorgenson DB, Poole JE et al (1998) Treatment of out-of-hospital cardiac arrest with a low-energy impedance-compensating biphasic waveform automatic external defibrillator. The LIFE Investigators. Biomed Instrum Technol 32:631–644PubMedGoogle Scholar
  26. 26.
    Schneider T, Martens PR, Paschen H et al (2000) Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200-to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Optimized Response to Cardiac Arrest (ORCA) Investigators. Circulation 102:1780–1787PubMedGoogle Scholar
  27. 27.
    Mittal S, Ayati S, Stein KM et al (1999) Comparison of a novel rectilinear biphasic waveform with a damped sine wave monophasic waveform for transthoracic ventricular defibrillation. ZOLL Investigators. J Am Coll Cardiol 34:1595–1601PubMedCrossRefGoogle Scholar
  28. 28.
    Stothert JC, Hatcher TS, Gupton CL et al (2004) Rectilinear biphasic waveform defibrillation of out-of-hospital cardiac arrest. Prehosp Emerg Care 8:388–392PubMedCrossRefGoogle Scholar
  29. 29.
    White RD, Hankins DG, Atkinson EJ (2001) Patient outcomes following defibrillation with a low energy biphasic truncated exponential waveform in out-of-hospital cardiac arrest. Resuscitation 49:9–14PubMedCrossRefGoogle Scholar
  30. 30.
    Higgins SL, O’Grady SG, Banville I et al (2004) Efficacy of lower-energy biphasic shocks for transthoracic defibrillation: a follow-up clinical study. Prehosp Emerg Care 8:262–267PubMedCrossRefGoogle Scholar
  31. 31.
    van Alem AP, Chapman FW, Lank P et al (2003) Aprospective, randomised and blinded comparison of first shock success of monophasic and biphasic waveforms in out-of hospital cardiac arrest. Resuscitation 58:17–24PubMedCrossRefGoogle Scholar
  32. 32.
    Walsh SJ, McClelland AJ, Owens CG et al (2004) Efficacy of distinct energy delivery protocols comparing two biphasic defibrillators for cardiac arrest. Am J Cardiol 94:378–380PubMedCrossRefGoogle Scholar
  33. 33.
    Morrison LJ, Dorian P, Long J et al (2005) Out-of-hospital cardiac arrest rectilinear biphasic to monophasic damped sine defibrillation waveforms with advanced life support intervention trial (ORBIT). Resuscitation 66:149–157PubMedCrossRefGoogle Scholar
  34. 34.
    White RD (2004) Waveforms for defibrillation and cardioversion: recent experimental and clinical studies. Curr Opin Crit Care 10:202–207PubMedCrossRefGoogle Scholar
  35. 35.
    Tang W, Weil MH, Sun S et al (2004) The effects of biphasic waveform design on post-resuscitation myocardial function. J Am Coll Cardiol 43:1228–1235PubMedCrossRefGoogle Scholar
  36. 36.
    American Heart Association (2005) Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. 2. Ethical issues. Circulation 112(Suppl IV):IV-6–IV-11Google Scholar
  37. 37.
    European Resuscitation Council (2005) Guidelines for resuscitation 2005. Resuscitation 67:157–342CrossRefGoogle Scholar
  38. 38.
    Walcott GP, Killingsworth CR, Ideker RE (2003) Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction? Resuscitation 59:59–70PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • R. D. White
    • 1
  1. 1.Departments of Anesthesiology and Internal MedicineMayo Clinic College of MedicineRochesterUSA

Personalised recommendations