Tissue partial pressure of carbon dioxide tension measurements and microcirculation visualisation. New techniques for the study of low flow states

  • G. Ristagno
  • W. Tang
  • M. H. Weil
Conference paper


Microcirculation is the ultimate determinant of the outcomes of circulatory shock states. Microcirculatory function is the prerequisite for adequate tissue oxygenation and therefore organ function. It transports oxygen and nutrients to tissue cells, ensures adequate immunological function and, during disease, delivers therapeutic drugs to target cells. It ismadeup of the smallest blood vessels: arterioles, capillaries and venules [1] (Fig. 1). The previous techniques used for studying microcirculation (microscopes, laser Doppler or plethysmography) were able to provide only a global measurement of microvascular blood flow; a measurement expressed as an average value of whatever was the diameter or direction of single vessels. Recent technological developments allow more precise and direct investigation of the tissue perfusion, and especially of the microcirculatory blood flow. The new techniques are basically noninvasive measurements of tissue carbon dioxide tension (PCO2), for example at the oral cavity mucosa, and the orthogonal polarisation spectral (OPS) imaging techniques, which have allowed direct visualisation and monitoring of microcirculation at the bedside [2, 3] (Fig. 2).


Chest Compression Haemorrhagic Shock Microvascular Blood Flow Microcirculatory Blood Flow Gastric Tonometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ince C (2005) The microcirculation is the monitor of sepsis. Crit Care Med 9(4) Suppl:S13–19Google Scholar
  2. 2.
    De Baker D (2003) OPS techniques. Minerva Anestesiol 69(5):388–391Google Scholar
  3. 3.
    Verdant C, De Backer D (2005) How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care 11(3):240–244PubMedCrossRefGoogle Scholar
  4. 4.
    Tang W, Weil MH, Sun S et al (1994) Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J Appl Physiol 76:572–577PubMedGoogle Scholar
  5. 5.
    Sato Y, Weil MH, Tang W et al (1997) Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82:55–562Google Scholar
  6. 6.
    Nakagawa Y, Weil MH, Tang W et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843PubMedGoogle Scholar
  7. 7.
    Desai VS, Weil MH, Tang W et al (1995) Hepatic, renal, and cerebral tissue hypercarbia during sepsis and shock in rats. J Lab Clin Med 125:456–461PubMedGoogle Scholar
  8. 8.
    Kette F, Weil MH, Gazmuri RJ et al (1993) Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 21:901–906PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson BA, Weil MH (1991) Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and carbon dioxide excesses. Crit Care Med 19(11):1432–1438PubMedCrossRefGoogle Scholar
  10. 10.
    Randall HM, Cohen JJ (1966) Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 211:493–505PubMedGoogle Scholar
  11. 11.
    Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199PubMedCrossRefGoogle Scholar
  12. 12.
    Doglio GR, Pusajio JF, Egurrola MA et al (1992) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 20(7):1074–1076CrossRefGoogle Scholar
  13. 13.
    Maynard N, Bihari D, Beale R et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210PubMedCrossRefGoogle Scholar
  14. 14.
    Sato Y, Weil MH, Tang W (1998) Tissue hypercarbic acidosis as a marker of acute circulatory failure (shock). Chest 114(1):263–274PubMedGoogle Scholar
  15. 15.
    Povoas HP, Weil MH, Tang W et al (2001) Decreases inmesenteric blood flow associated with increases in sublingual PCO2 during hemorrhagic shock. Shock 15:398–402PubMedCrossRefGoogle Scholar
  16. 16.
    Pellis T, Weil MH, Tang W et al (2005) Increases in both buccal and sublingual PCO2 reflect decreases in tissue blood flows in a porcine model during hemorrhagic shock. J Trauma 58(4):817–824PubMedGoogle Scholar
  17. 17.
    Cammarata G, Weil MH, Fries M et al (2006) Buccal capnometry to guide management of massive blood loss. J Appl Physiol 100(1):304–306PubMedCrossRefGoogle Scholar
  18. 18.
    Shiessler C, Schaudig S, Harris AG et al (2002) Orthogonal polarization spectral imaging—a new clinical method for monitoring of microcirculation. Anaesthetist 51(7):576–579CrossRefGoogle Scholar
  19. 19.
    Groner W, Winkelman JW, Harris AG et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212PubMedCrossRefGoogle Scholar
  20. 20.
    Thomale UW, Schaser KD, Unterberg AW et al (2001) Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury. J Neurosc Meth 108:85–90CrossRefGoogle Scholar
  21. 21.
    De Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  22. 22.
    Vajda K, Szabo A, Boros M (2004) Heterogeneous microcirculation in the rat small intestine during hemorrhagic shock: quantification of the effects of hypertonic-hyperoncotic resuscitation. Eur Surg Res 36(6):338–344PubMedCrossRefGoogle Scholar
  23. 23.
    Rizzoni D, Porteri E, Boari GE et al (2003) Prognostic significance of small-artery structure in hypertension. Circulation 108:2230–2235PubMedCrossRefGoogle Scholar
  24. 24.
    Spronk PE, Ince C, Gardien MJ et al (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396PubMedCrossRefGoogle Scholar
  25. 25.
    De Backer D, Creteur J, Dubois MJ et al (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99PubMedCrossRefGoogle Scholar
  26. 26.
    Fries M, Weil MH, Sun S et al (2006) Increases in tissue PCO2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med 34(2):446–452PubMedCrossRefGoogle Scholar
  27. 27.
    Sato Y, Weil MH, Sun S et al (1997) Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med 25:733–736PubMedCrossRefGoogle Scholar
  28. 28.
    Yu T, Weil MH, Tang W et al (2002) Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation 106:368–372PubMedCrossRefGoogle Scholar
  29. 29.
    Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470PubMedCrossRefGoogle Scholar
  30. 30.
    Weil MH, Bisera J, Trevino RP et al (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909PubMedCrossRefGoogle Scholar
  31. 31.
    Gudipati CV, Weil MH, Bisera J et al (1988) Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation 77:234–239PubMedGoogle Scholar
  32. 32.
    Fries M, Weil MH, Chang YT et al (2006) Capillary blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation, in pressGoogle Scholar
  33. 33.
    Ristagno G, Sun S, Chang Y-T et al (2005) Persistent cerebral microcirculatory blood flow after onset of cardiac arrest. Crit Care Med 33(12) Suppl. A100:173Google Scholar
  34. 34.
    Lewis CM, Weil MH (1969) Hemodynamic spectrum of vasopressor and vasodilator drug. JAMA 208:1391–1398PubMedCrossRefGoogle Scholar
  35. 35.
    Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC) (1986) JAMA 255:2905–2989CrossRefGoogle Scholar
  36. 36.
    Guidelines for cardiopulmonary resuscitation and emergency cardiac care. II Adult basic life support III. (1992) Adult advanced life support. JAMA 268:2184–2241CrossRefGoogle Scholar
  37. 37.
    AHA Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 8(Suppl):I–129Google Scholar
  38. 38.
    International Liaison Committee on Resuscitation (2005) Part 4: Advanced life support. Resuscitation 67:213–247CrossRefGoogle Scholar
  39. 39.
    Pellis T, Weil MH, Tang W et al (2003) Evidence favoring the use of an α2-elective vasopressor agent for cardiopulmonary resuscitation. Circulation 108:2716–2721PubMedCrossRefGoogle Scholar
  40. 40.
    Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586PubMedGoogle Scholar
  41. 41.
    Bylund DB (1988) Subtypes of alpha-adrenoceptors: Pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9(10):356–361PubMedCrossRefGoogle Scholar
  42. 42.
    Cammarata G, Weil MH, Sun S et al (2004) Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med 32(9 Suppl):S440–443PubMedCrossRefGoogle Scholar
  43. 43.
    Huang L, Weil MH, Cammarata G et al (2004) Nonselective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model. Crit Care Med 32(9 Suppl):S378–380PubMedCrossRefGoogle Scholar
  44. 44.
    Grupp IL, Lorenz JN, Walsh RA et al (1998) Overexpression of alpha 1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 275:H1338–1350PubMedGoogle Scholar
  45. 45.
    Gregorini L, Marco J, Kozakova M et al (1999) Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 99:482–490PubMedGoogle Scholar
  46. 46.
    Sun SJ, Weil MH, Tang W et al (1999) Combined effects of buffer and adrenergic agents on postresuscitation myocardial function. J Pharm Exp Ther 291:773–777Google Scholar
  47. 47.
    Cao L, Weil MH, Sun S et al (2003) Vasopressor agents for cardiopulmonary resuscitation. J Cardiovasc Pharmacol Ther 8(2):115–121PubMedCrossRefGoogle Scholar
  48. 48.
    Klouche K, Weil MH, Sun S et al (2003) A comparison of alpha-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation. 57(1):93–100PubMedCrossRefGoogle Scholar
  49. 49.
    Ishibashi Y, Duncker DJ, Bache RJ (1997) Endogenous nitric oxide masks alpha2-adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 80:196–207PubMedGoogle Scholar
  50. 50.
    Fries M, Tang W, Castillo C et al (2004) Detrimental effects of epinephrine on microcirculatory blood flow in a porcine model of cardiac arrest. Crit Care Med 32(Suppl):A56CrossRefGoogle Scholar
  51. 51.
    Ristagno G, Sun S, Chang Y-T et al (2005) Epinephrine reduces cerebral microcirculatory blood flow during CPR. Crit Care Med 33(12) Suppl. A24:95Google Scholar
  52. 52.
    Gisvold SE, Sterz F, Abramson NS et al (1996) Cerebral resuscitation from cardiac arrest: treatment potentials. Crit Care Med 24(2 Suppl):S69–80PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • G. Ristagno
    • 1
    • 2
  • W. Tang
    • 3
  • M. H. Weil
    • 2
  1. 1.Department of Perioperative Medicine, Intensive Care and EmergencyTrieste University Medical SchoolTriesteItaly
  2. 2.Weil Institute of Critical Care MedicineRancho MirageUSA
  3. 3.Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations