Advertisement

Electrolyte emergencies, anion gap, osmolality

  • F. Schiraldi
  • G. Guiotto
  • L. Morelli
Conference paper

Abstract

In the critically ill we often observe some dysregulation of the fluid-electrolyte balance; far from being an innocent bystander, the intensive medicine specialist could sometime be responsible for this, by way of overzealous correction, drug interference, or a “cosmetic” approach to the problem. In this short review, we will try to recall some basic principles that could help to improve therapeutic strategies.

Keywords

Metabolic Acidosis Total Body Water Urine Osmolality Severe Hyponatremia Serum Magnesium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lang F, Ritter M, Volkl H, Haussinger D (1993) The biological significance of cell volume. Ren Physiol Biochem 16:48–56PubMedGoogle Scholar
  2. 2.
    Snyder NA, Feigal DW, Arieff AI (1987) Hypernatremia in elderly patients: a heterogeneous, morbid and iatrogenic entity. Ann Intern Med 107:309–314PubMedGoogle Scholar
  3. 3.
    Lewis SA, Donaldson P (1990) Ion channels and cell volume regulation: chaos in an organized system. News Physiol Sci 5:112–118Google Scholar
  4. 4.
    Kinne RKH, Ruhfus B, Tinel H et al (1995) Renal organic osmolytes: signal transduction pathways and release mechanisms. In: De Santo NG, Capasso G (eds) Acid-base and electrolyte balance. IISS, pp 237–242Google Scholar
  5. 5.
    Schrier RW (1988) Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephrotic syndrome, cirrhosis and pregnancy. N Engl J Med 319:1065–1073PubMedCrossRefGoogle Scholar
  6. 6.
    Daugirdas JT, Kronfol NO, Tzamaloukas AH, Ing TS (1989) Hyperosmolar coma: cellular dehydration and the serum sodium concentration. Ann Intern Med 110:855–857PubMedGoogle Scholar
  7. 7.
    Kaufman BS (ed) (1992) Fluid resuscitation of the critically ill. Critical Care Clin 8:235Google Scholar
  8. 8.
    Lichtwark-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients under mechanical ventilation. Intensive Care Med 18:142–147CrossRefGoogle Scholar
  9. 9.
    Iijma T, Iwao Y, Sankawa H (1998) Circulating blood volume measured by pulse-dye densitometry: comparison with (131)I-HSA analysis. Anesthesiology 89:1329–1335CrossRefGoogle Scholar
  10. 10.
    Sakka SG, Ruhl CC, Pfeiffer UJ (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26(2):180–187PubMedCrossRefGoogle Scholar
  11. 11.
    Tschaikowsky K, Neddermeyer U, Pscheidl E et al (2000) Changes in circulating blood volume after cardiac surgery measured by a novel method using hydroxyethyl starch. Crit Care Med 28:336–341PubMedCrossRefGoogle Scholar
  12. 12.
    Michard F, Teboul J-L (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  13. 13.
    Jardin F, Vieillard-Baron A (2006) Ultrasonographic examination of the venae cavae. Intensive Care Med 32:203–206PubMedCrossRefGoogle Scholar
  14. 14.
    Reynolds RM, Padfield PL, Seckl JR (2006) Disorders of sodium balance. BMJ 332:702–705PubMedCrossRefGoogle Scholar
  15. 15.
    Saeed BO, Beaumont D, Handley GH et al (2002). Severe hyponatremia. J Clin Pathol 55:893–896PubMedCrossRefGoogle Scholar
  16. 16.
    Kumar S, Berl T (1998) Sodium. Lancet 352:220–222PubMedCrossRefGoogle Scholar
  17. 17.
    Yancey PH, Clark ME, Hand SC et al (1981) Living with water stress: evolution of osmolyte systems. Science 217:1214–1224CrossRefGoogle Scholar
  18. 18.
    Sterns RH, Cappuccio JD, Silver SM et al (1994) Neurologic sequelae after treatment of severe hyponatremia. A multicenter perspective. J Am Soc Nephrol 4:1522–1530PubMedGoogle Scholar
  19. 19.
    Sonnenblick M, Friedlander Y, Rosin AJ (1991) Diuretic-induced severe hyponatremia. Review and analysis of 129 reported patients. Chest 103:601–606CrossRefGoogle Scholar
  20. 20.
    Bhardwaj A, Ulatowsky JA (2004) Hypertonic saline solutions in brain injury. Curr Opin Crit Care 10(2):126–131PubMedCrossRefGoogle Scholar
  21. 21.
    Guglielminotti J, Pernet P, Maury E et al (2002) Osmolar gap hyponatremia in critically ill patients: Evidence for the sick cell syndrome? Crit Care Med 30:1051–1055PubMedCrossRefGoogle Scholar
  22. 22.
    Chernow B (1989) Hypomagnesemia in patients in post-operative intensive care. Chest 95:391PubMedCrossRefGoogle Scholar
  23. 23.
    Rubeiz GY, Bharozian MTH (1993) Association of hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med 21:203–209PubMedCrossRefGoogle Scholar
  24. 24.
    Zaidenberg G, Mimouni FB, Dollberg S (2004) Effect of bicarbonate on neonatal serum ionized Mg in vitro. Magnes Res 17(2):90–93PubMedGoogle Scholar
  25. 25.
    Siegel D (1992) Diuretics, serum and intracellular electrolyte levels, and ventricular arrhythmias in hypertensive men. JAMA 267:1083–1089PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuji H, Venditti FJ, Evans JC (1994) The association of levels of serum potassium and magnesium with ventricular premature complexes. Am J Cardiol 74:232–235PubMedCrossRefGoogle Scholar
  27. 27.
    Kerin N, Somberg J (1994) Proarrhythmia: definition risk factors, causes, treatment and controversies. Am Heart J 128:575–586PubMedCrossRefGoogle Scholar
  28. 28.
    Fraley DS, Adler S (1977) Correction of hyperkalemia by bicarbonate despite constant blood pH. Kidney Int 12:354–360PubMedCrossRefGoogle Scholar
  29. 29.
    Blumberg A, Wheidmann P (1988) Effect of various therapeutics approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med 85:507–513PubMedCrossRefGoogle Scholar
  30. 30.
    Gauthier PM, Szerlip HM (2002) Metabolic acidosis in the intensive care unit. Crit Care 18:289–308CrossRefGoogle Scholar
  31. 31.
    Mecher C, Rackow EC, Astiz ME, Weil MH (1991) Unaccounted for anion in metabolic acidosis during severe sepsis in humans. Crit Care Med 19:705–711PubMedCrossRefGoogle Scholar
  32. 32.
    Forni LG, McKinnon W, Hilton PJ (2006) Unmeasured anions in metabolic acidosis: unravelling the mystery. Crit Care 10:220PubMedCrossRefGoogle Scholar
  33. 33.
    Dempsey GA, Lyall HJ, Corke CF et al (2000) Pyroglutamic acidemia. A cause of high anion gap metabolic acidosis. Crit Care Med 28:1803–1807PubMedCrossRefGoogle Scholar
  34. 34.
    Gunnerson KJ, Saul M, He S et al (2006) Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 10:R22PubMedCrossRefGoogle Scholar
  35. 35.
    Mizock BA, Belyaev S, Mecher C (2004) Unexplained metabolic acidosis in critically ill patients: the role of pyroglutamic acid. Intensive Care Med 30:502–505PubMedCrossRefGoogle Scholar
  36. 36.
    Kaplan LJ, Kellum JA (2004) Initial pH, base deficit, lactate, anion gap, strong ion difference and strong ion gap predict outcome from major vascular injury. Crit Care Med 32:1120–1124PubMedCrossRefGoogle Scholar
  37. 37.
    Omron EM, Gilbert RC (2005) Strong ion gap. Crit Care Med 33:1CrossRefGoogle Scholar
  38. 38.
    Morgan TJ (2005) The meaning of acid-base abnormalities in the intensive care unit. III. Effects of fluid administration. Crit Care 9(2):204–211PubMedCrossRefGoogle Scholar
  39. 39.
    Jurado RL, del Rio C, Nassar G (1998) Low anion gap. South Med J 91:7Google Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • F. Schiraldi
    • 1
  • G. Guiotto
    • 1
  • L. Morelli
    • 1
  1. 1.Emergency Medicine DivisionS. Paolo HospitalNaplesItaly

Personalised recommendations