Genetic Aspects of Vascular Malformations

  • Nisha Limaye
  • Miikka Vikkula


Vascular malformations are comprised of a variety of developmental defects of the vasculature. Typically sporadic in nature, they can sometimes occur as incompletely penetrant, inherited traits. The genetic bases of several of these anomalies have been identified, and are described in this review. This has had a hugely beneficial impact in terms of the precise diagnosis and appropriate, effective treatment of different disease entities; it has also revealed potential therapeutic targets for the future. The advances made thus far, however, are largely confined to the rare, familial forms, and much remains to be uncovered about the genes that mediate common sporadic versions of vascular malformations. Moreover, the pathogenic pathways and molecular mechanisms by which the aberrant genes cause these defined, often heterogeneous lesions, remain to be thoroughly dissected. Previous studies have largely focused on the analysis of blood samples, as these are more accessible. Further progress in identifying the somatic events that cause sporadic lesions or locally exacerbate the pathogenic effects of germline-heterozygous mutant alleles, will require the additional assessment of irregularities of gene expression and function at the level of lesion-derived tissue.


Vascular Malformation Hereditary Hemorrhagic Telangiectasia Venous Malformation Hereditary Haemorrhagic Telangiectasia Lymphatic Malformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478CrossRefPubMedGoogle Scholar
  2. 2.
    Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 69:412–422CrossRefPubMedGoogle Scholar
  3. 3.
    Boon LM, Vikkula M (2007) Vascular malformations. In: Fitzpatrick’s dermatology in general medicine, 7th edn. McGraw-Hill Professional PublishingGoogle Scholar
  4. 4.
    Brouillard P, Vikkula M (2007) Genetic causes of vascular malformations. Hum Mol Genet 16 Spec No 2:R140–R149CrossRefPubMedGoogle Scholar
  5. 5.
    Eerola I, Boon LM, Mulliken JB et al (2003) Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 73:1240–1249CrossRefPubMedGoogle Scholar
  6. 6.
    Revencu N, Boon LM, Vikkula M (2007) Arteriovenous malformation in mice and men. In: Marmé D, Fusenig N (eds) Tumor angiogenesis: Mechanisms and cancer therapy. Springer-Verlag, Heidelberg, pp 363–374Google Scholar
  7. 7.
    Revencu N, Boon LM, Mulliken JB, Vikkula M (in press) RASA1 and capillary malformation-arteriovenous malformation. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn errors of development. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Revencu N, Vikkula M (2006) Cerebral cavernous malformation: new molecular and clinical insights. J Med Genet 43:716–721CrossRefPubMedGoogle Scholar
  9. 9.
    Laberge-le Couteulx S, Jung HH, Labauge P et al (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193CrossRefPubMedGoogle Scholar
  10. 10.
    Sahoo T, Johnson EW, Thomas JW et al (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8:2325–2333CrossRefPubMedGoogle Scholar
  11. 11.
    Liquori CL, Berg MJ, Siegel AM et al (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73:1459–1464CrossRefPubMedGoogle Scholar
  12. 12.
    Bergametti F, Denier C, Labauge P et al (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76:42–51CrossRefPubMedGoogle Scholar
  13. 13.
    Liquori CL, Berg MJ, Squitieri F et al (2005) Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat 27:118CrossRefGoogle Scholar
  14. 14.
    Kehrer-Sawatzki H, Wilda M, Braun VM et al (2002) Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1). Acta Neuropathol (Berl) 104:231–240Google Scholar
  15. 15.
    Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36:872–874CrossRefPubMedGoogle Scholar
  16. 16.
    Labauge P, Enjolras O, Bonerandi JJ et al (1999) An association between autosomal dominant cerebral cavernomas and a distinctive hyperkeratotic cutaneous vascular malformation in 4 families. Ann Neurol 45:250–254CrossRefPubMedGoogle Scholar
  17. 17.
    Eerola I, Plate KH, Spiegel R et al (2000) KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous malformation associated with cerebral capillary malformation. Hum Mol Genet 9:1351–1355CrossRefPubMedGoogle Scholar
  18. 18.
    Limaye N, Revencu N, Van Regemorter N et al (in preparation) Novel KRIT1 mutations mediating cerebral cavernous malformations (CCMs)Google Scholar
  19. 19.
    Wouters V, Boon LM, Vikkula M (in press) TIE2 and cutaneomucosal venous malformation. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn errors of development. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Dompmartin A, Archer A, Thibon P et al (in press) Consumptive coagulopathy associated with venous malformations is frequent: need for treatment? Arch DermatolGoogle Scholar
  21. 21.
    Vikkula M, Boon LM, Carraway KL et al (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–1190CrossRefPubMedGoogle Scholar
  22. 22.
    Hughes DP, Marron MB, Brindle NP (2003) The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res 92:630–636CrossRefPubMedGoogle Scholar
  23. 23.
    Morris PN, Dunmore BJ, Brindle NP (2006) Mutant Tie2 causing venous malformation signals through Shc. Biochem Biophys Res Commun 346:335–338CrossRefPubMedGoogle Scholar
  24. 24.
    Morris PN, Dunmore BJ, Tadros A et al (2005) Functional analysis of a mutant form of the receptor tyrosine kinase Tie2 causing venous malformations. J Mol Med 83:58–63CrossRefPubMedGoogle Scholar
  25. 25.
    Limaye N, Wouters V, Uebelhoer M et al (2008) Somatic mutations in the Angioprotein-Receptor TIE2 can cause both solitary and multiple sporadic venous malformation. Nat Genet (in press)Google Scholar
  26. 26.
    Brouillard P, Enjolras O, Boon LM, Vikkula M (in press) GLMN and glomuvenous malformation. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn errors of development. Oxford University Press, OxfordGoogle Scholar
  27. 27.
    Brouillard P, Boon LM, Mulliken JB et al (2002) Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am J Hum Genet 70:866–874CrossRefPubMedGoogle Scholar
  28. 28.
    Irrthum A, Karkkainen MJ, Devriendt K et al (2000) Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet 67:295–301CrossRefPubMedGoogle Scholar
  29. 29.
    Karkkainen MJ, Ferrell RE, Lawrence EC et al (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25:153–159CrossRefPubMedGoogle Scholar
  30. 30.
    Ghalamkarpour A, Morlot S, Raas-Rothschild A et al (2006) Hereditary lymphedema type I associated with VEGFR3 mutation: the first de novo case and atypical presentations. Clin Genet 70:330–335CrossRefPubMedGoogle Scholar
  31. 31.
    Finegold DN, Kimak MA, Lawrence EC et al (2001) Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet 10:1185–1189CrossRefPubMedGoogle Scholar
  32. 32.
    Bell R, Brice G, Child AH et al (2001) Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum Genet 108:546–551CrossRefPubMedGoogle Scholar
  33. 33.
    Fang J, Dagenais SL, Erickson RP, Arlt MF et al (2000) Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 67:1382–1388CrossRefPubMedGoogle Scholar
  34. 34.
    Irrthum A, Devriendt K, Chitayat D et al (2003) Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosislymphedema-telangiectasia. Am J Hum Genet 72:1470–1478CrossRefPubMedGoogle Scholar
  35. 35.
    Ghalamkarpour A, Devriendt K, Vikkula M (in press) SOX18 and the Hypotrichosis-Lymphedema-Telangiectasia Syndrome. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Inborn errors of development. Oxford University Press, OxfordGoogle Scholar
  36. 36.
    Smahi A, Courtois G, Vabres P et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405:466–472CrossRefPubMedGoogle Scholar
  37. 37.
    Bull LN, Roche E, Song EJ et al (2000) Mapping of the locus for cholestasis-lymphedema syndrome (Aagenaes syndrome) to a 6.6-cM interval on chromosome 15q. Am J Hum Genet 67:994–999CrossRefPubMedGoogle Scholar
  38. 38.
    Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43:97–110CrossRefPubMedGoogle Scholar
  39. 39.
    Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753CrossRefPubMedGoogle Scholar
  40. 40.
    McAllister KA, Grogg KM, Johnson DW et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351CrossRefPubMedGoogle Scholar
  41. 41.
    Johnson DW, Berg JN, Baldwin MA et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195CrossRefPubMedGoogle Scholar
  42. 42.
    Cole SG, Begbie ME, Wallace GM, Shovlin CL (2005) A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 42:577–582CrossRefPubMedGoogle Scholar
  43. 43.
    Bayrak-Toydemir P, McDonald J, Akarsu N et al (2006) A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet 140:2155–2162CrossRefPubMedGoogle Scholar
  44. 44.
    Gallione CJ, Repetto GM, Legius E et al (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852–859CrossRefPubMedGoogle Scholar
  45. 45.
    Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS (2003) Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 12 Spec 1:R97–R112CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Nisha Limaye
    • 1
  • Miikka Vikkula
    • 1
  1. 1.Laboratory of Human Molecular Genetics de Duve InstituteUniversité Catholique de Louvain BrusselsBelgium

Personalised recommendations