Skip to main content
  • 1644 Accesses

Abstract

The vascular system is a complex network of vessels that carries oxygenated blood and nutrients throughout our bodies. It comes as no surprise that angiogenesis, the process of growing new blood vessels, occurs not only in health, but also in serious disease, where it may be either up- or down-regulated. While the growth of the vascular system is one of the earlier events of embryogenesis, angiogenesis also occurs in adulthood, during wound healing and restoration of blood flow to injured tissues. The healthy body controls angiogenesis through a perfect balance of modulators, regulated by a strong interaction between growth factors and inhibitors, the imbalance of which can lead to disease. Angiogenesis is a “common denominator” shared by diseases affecting more than one billion people worldwide; these diseases are caused by both excessive angiogenesis (cancer, diabetic eye disease, rheumatoid arthritis), and insufficient angiogenesis (coronary heart disease, stroke, delayed wound healing) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeWitt N (2005) Angiogenesis. Nature 438(7070):931

    Article  CAS  Google Scholar 

  2. Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210

    Article  PubMed  CAS  Google Scholar 

  3. Asahara T, Isner JM (2002) Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 2:171–178

    Article  Google Scholar 

  4. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Article  PubMed  CAS  Google Scholar 

  5. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  7. Serini G, Ambrosi D, Giraudo E et al (2003) Modeling the early stages of vascular network assembly. EMBO J 22:1771–1779

    Article  PubMed  CAS  Google Scholar 

  8. Hacohen N, Kramer S, Sutherland D et al (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263

    Article  PubMed  CAS  Google Scholar 

  9. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  10. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    PubMed  CAS  Google Scholar 

  11. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  PubMed  CAS  Google Scholar 

  12. Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  13. Gale NW, Baluk P, Pan L et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    Article  PubMed  CAS  Google Scholar 

  14. Augustin HG (2001) Tubes, branches, and pillars: the many ways of forming a new vasculature. Circ Res 89:645–647

    PubMed  CAS  Google Scholar 

  15. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 15 51(5):363–369

    Article  CAS  Google Scholar 

  16. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117

    Article  PubMed  CAS  Google Scholar 

  17. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  PubMed  CAS  Google Scholar 

  18. Eriksson K, Magnusson P, Dixelius J et al (2003) Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536:19–24

    Article  PubMed  CAS  Google Scholar 

  19. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tipcell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  20. Gunsilius E, Duba HC, Petzer AL et al (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355:1688–1691

    Article  PubMed  CAS  Google Scholar 

  21. Anghelina M, Schmeisser A, Krishnan P et al (2002) Migration of monocytes/macrophages in vitro and in vivo is accompanied by MMP12-dependent tunnels formation and by neo-vascularization. Cold Spring Harb Symp Quant Biol LXVII:209–215

    Article  Google Scholar 

  22. Hogg N, Henderson R, Leitinger B et al (2002) Mechanisms contributing to the activity of integrins on leukocytes. Immunol Rev 186:164–171

    Article  PubMed  CAS  Google Scholar 

  23. Moldovan NI (2002) Role of monocytes and macrophages in adult angiogenesis: a light at the tunnel’s end. J Hematother Stem Cell Res 11(2):179–194

    Article  PubMed  Google Scholar 

  24. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  Google Scholar 

  25. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  26. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  CAS  Google Scholar 

  27. Iruela-Arispe ML, Dvorak HF (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 78:672–677

    PubMed  CAS  Google Scholar 

  28. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  29. Hashimoto T, Wen G, Lawton MT et al (2003) Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenus malformations. Stroke 34:925–931

    Article  PubMed  CAS  Google Scholar 

  30. Lee CZ, Xu B, Hashimoto T et al (2004) Doxicycline suppress cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke 35:1715–1719

    Article  PubMed  CAS  Google Scholar 

  31. Marler JJ, Fishman SJ, Kilroy SM et al (2005) Increased expression of urinary matrix metalloproteinases parallels the extent of activity of vascular anomalies. Pediatrics 116:38–45

    Article  PubMed  Google Scholar 

  32. Folkman J, Merler E, Abernathy C, Williams G (1978) Isolation of a tumor factor responsible or angiogenesis. J Exp Med 133:275–288

    Article  Google Scholar 

  33. Kerbel RS (1997) A cancer therapy resistant to resistance [news; comment] [see comments] Nature 390:335–336

    Article  PubMed  CAS  Google Scholar 

  34. Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [see comments]. Nature 390:404–407

    Article  PubMed  CAS  Google Scholar 

  35. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4(6):423–436

    Article  PubMed  CAS  Google Scholar 

  36. Klement G, Baruchel S, Rak J et al (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Agliano, A. (2009). Angiogenesis. In: Mattassi, R., Loose, D.A., Vaghi, M. (eds) Hemangiomas and Vascular Malformations. Springer, Milano. https://doi.org/10.1007/978-88-470-0569-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0569-3_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0568-6

  • Online ISBN: 978-88-470-0569-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics