Hemodynamic Monitoring in Patients with Acute Heart Failure

  • J. -L. Vincent
  • R. Holsten
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)


Acute heart failure has been defined simply as “the rapid onset of symptoms and signs secondary to abnormal cardiac function” [1]. Acute heart failure can present de novo with no prior history of heart disease (although asymptomatic cardiac disease may well have been present), or on a background of decompensated chronic cardiac failure. Acute heart failure is, therefore, a syndrome with varying etiologies and ranging in severity from relatively mild dyspnea, through severe pulmonary edema with acute respiratory distress, to full-blown cardiogenic shock, where tissue perfusion is compromised. Whatever the etiology, the result is an inability of the heart to maintain cardiac output, and hence oxygen supply, sufficient to meet the needs of the peripheral tissues.


Cardiac Output Central Venous Pressure Acute Heart Failure Hemodynamic Monitoring Pulse Pressure Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nieminen MS, Bohm M, Cowie MR et al (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 26:384–416PubMedCrossRefGoogle Scholar
  2. 2.
    Rudiger A, Harjola VP, Muller A et al (2005) Acute heart failure: clinical presentation, one-year mortality and prognostic factors. Eur J Heart Fail 7:662–670PubMedCrossRefGoogle Scholar
  3. 3.
    Zannad F, Mebazaa A, Juilliere Y et al (2006) Clinical profile, contemporary management and one-year mortality in patients with severe acute heart failure syndromes: The EFICA study. Eur J Heart Fail Mar 2 [Epub ahead of print]Google Scholar
  4. 4.
    Fonarow GC (2003) The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med 4(Suppl7):S21–S30PubMedGoogle Scholar
  5. 5.
    Tavazzi L, Maggioni AP, Lucci D et al (2006) Nationwide survey on acute heart failure in cardiology ward services in Italy. Eur Heart J 27:1207–1215PubMedCrossRefGoogle Scholar
  6. 6.
    Tayara W, Starling RC, Yamani MH, Wazni O, Jubran F, Smedira N (2006) Improved survival after acute myocardial infarction complicated by cardiogenic shock with circulatory support and transplantation: comparing aggressive intervention with conservative treatment. J Heart Lung Transplant 25:504–509PubMedCrossRefGoogle Scholar
  7. 7.
    Bennett D (2005) Arterial pressure: a personal view. In: Pinskly MR et al (eds) Functional hemodynamic monitoring. Springer, Berlin Heidelberg New York, pp 89–97CrossRefGoogle Scholar
  8. 8.
    Frezza EE, Mezghebe H (1998) Indications and complications of arterial catheter use in surgical or medical intensive care units: analysis of 4932 patients. Am Surg 64:127–131PubMedGoogle Scholar
  9. 9.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  10. 10.
    Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards JD, Mayall RM (1998) Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med 26:1356–1360PubMedCrossRefGoogle Scholar
  12. 12.
    Ladakis C, Myrianthefs P, Karabinis A et al (2001) Central venous and mixed venous oxygen saturation in critically ill patients. Respiration 68:279–285PubMedCrossRefGoogle Scholar
  13. 13.
    Dueck MH, Klimek M, Appenrodt S et al (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103:249–257PubMedCrossRefGoogle Scholar
  14. 14.
    Pearse RM, Ikram K, Barry J (2004) Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 8:190–195PubMedCrossRefGoogle Scholar
  15. 15.
    De Backer D, Heenen S, Piagnerelli M et al (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523PubMedCrossRefGoogle Scholar
  16. 16.
    Goedje O, Hoeke K, Lichtwarck-Aschoff M et al (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27:2407–2412PubMedCrossRefGoogle Scholar
  17. 17.
    Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A (2000) Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output? J Cardiothorac Vasc Anesth 14:119–124PubMedCrossRefGoogle Scholar
  18. 18.
    Linton R, Band D, O’Brien T et al (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25:1796–1800PubMedCrossRefGoogle Scholar
  19. 19.
    Kurita T, Morita K, Kato S et al (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79:770–775PubMedGoogle Scholar
  20. 20.
    Connors AF, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276:889–897PubMedCrossRefGoogle Scholar
  21. 21.
    Polanczyk CA, Rohde LE, Goldman L et al (2001) Right heart catheterization and cardiac complications in patients undergoing noncardiac surgery: an observational study. JAMA 286:309–314PubMedCrossRefGoogle Scholar
  22. 22.
    Peters SG, Afessa B, Decker PA et al (2003) Increased risk associated with pulmonary artery catheterization in the medical intensive care unit. J Crit Care 18:166–171PubMedCrossRefGoogle Scholar
  23. 23.
    Murdoch SD, Cohen AT, Bellamy MC (2000) Pulmonary artery catheterization and mortality in critically ill patients. Br J Anaesth 85:611–615PubMedCrossRefGoogle Scholar
  24. 24.
    Afessa B, Spencer S, Khan W et al (2001) Association of pulmonary artery catheter use with in-hospital mortality. Crit Care Med 29:1145–1148PubMedCrossRefGoogle Scholar
  25. 25.
    Yu DT, Platt R, Lanken PN et al (2003) Relationship of pulmonary artery catheter use to mortality and resource utilization in patients with severe sepsis. Crit Care Med 31:2734–2741PubMedCrossRefGoogle Scholar
  26. 26.
    Rhodes A, Cusack RJ, Newman PJ et al (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264PubMedCrossRefGoogle Scholar
  27. 27.
    Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14PubMedCrossRefGoogle Scholar
  28. 28.
    Chittock DR, Dhingra VK, Ronco JJ et al (2004) Severity of illness and risk of death associated with pulmonary artery catheter use. Crit Care Med 32:911–915PubMedCrossRefGoogle Scholar
  29. 29.
    Sakr Y, Vincent JL, Reinhart K et al (2005) Use of the pulmonary artery catheter is not associated with worse outcome in the intensive care unit. Chest 128:2722–2731PubMedCrossRefGoogle Scholar
  30. 30.
    Binanay C, Califf RM, Hasselblad V et al (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294:1625–1633PubMedCrossRefGoogle Scholar
  31. 31.
    Nohria A, Mielniczuk LM, Stevenson LW (2005) Evaluation and monitoring of patients with acute heart failure syndromes. Am J Cardiol 96:32G–40GPubMedCrossRefGoogle Scholar
  32. 32.
    McLean AS, Huang SJ (2006) Intensive care echocardiogrphy. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 131–141CrossRefGoogle Scholar
  33. 33.
    Hofer CK, Zollinger A (2006) Less invasive cardiac output monitoring: characteristics and limitations. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 162–175CrossRefGoogle Scholar
  34. 34.
    Bettex DA, Hinselmann V, Hellermann JP et al (2004) Transoesophageal echocardiography is unreliable for cardiac output assessment after cardiac surgery compared with thermodilution. Anaesthesia 59:1184–1192PubMedCrossRefGoogle Scholar
  35. 35.
    Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066PubMedCrossRefGoogle Scholar
  36. 36.
    Sageman WS, Riffenburgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 16:8–14PubMedCrossRefGoogle Scholar
  37. 37.
    Spiess BD, Patel MA, Soltow LO, Wright IH (2001) Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth 15:567–573PubMedCrossRefGoogle Scholar
  38. 38.
    Hirschl MM, Kittler H, Woisetschlager C et al (2000) Simultaneous comparison of thoracic bioimpedance and arterial pulse waveform-derived cardiac output with thermodilution measurement. Crit Care Med 28:1798–1802PubMedCrossRefGoogle Scholar
  39. 39.
    Cotter G, Moshkovitz Y, Kaluski E et al (2004) Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance. Chest 125:1431–1440PubMedCrossRefGoogle Scholar
  40. 40.
    Albert NM, Hail MD, Li J, Young JB (2004) Equivalence of the bioimpedance and thermodilution methods in measuring cardiac output in hospitalized patients with advanced, decompensated chronic heart failure. Am J Crit Care 13:469–479PubMedGoogle Scholar
  41. 41.
    Botero M, Kirby D, Lobato EB et al (2004) Measurement of cardiac output before and after cardiopulmonary bypass: comparison among aortic transit-time ultrasound, thermodilution, and noninvasive partial CO2 rebreathing. J Cardiothorac Vasc Anesth 18:563–572PubMedCrossRefGoogle Scholar
  42. 42.
    Kotake Y, Moriyama K, Innami Y et al (2003) Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology 99:283–288PubMedCrossRefGoogle Scholar
  43. 43.
    Mielck F, Buhre W, Hanekop G et al (2003) Comparison of continuous cardiac output measurements in patients after cardiac surgery. J Cardiothorac Vasc Anesth 17:211–216PubMedCrossRefGoogle Scholar
  44. 44.
    Gheorghiade M, Zannad F, Sopko G et al (2005) Acute heart failure syndromes: current state and framework for future research. Circulation 112:3958–3968PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • J. -L. Vincent
    • 1
  • R. Holsten
    • 1
  1. 1.Department of Intensive Care, Erasme University HospitalFree University of BrusselsBelgium

Personalised recommendations