Skip to main content

Circulatory Failure: Bedside Functional Hemodynamic Monitoring

  • Chapter
Perioperative Critical Care Cardiology

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

Four basic classes of circulatory shock can be clinically defined: hypovolemic, cardiogenic, obstructive, and distributive. Looking at the physiology of cardiac performance, taking a pathophysiologic approach we can distinguish between hypovolemic shock, distributive shock, systolic cardiogenic shock, diastolic cardiogenic shock, or a mix of them. All these types evolve, if not treated early and adequately, towards end-organ failure (dysoxia, microcirculatory failure). Multi-organ dysfunction syndrome (MODS) accounts for most deaths in the intensive care unit (ICU). Disturbances in systemic hemodynamics and organ perfusion resulting in tissue hypoxia appear to play a key role in the onset and maintenance of MODS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  2. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  CAS  Google Scholar 

  3. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337

    Article  PubMed  Google Scholar 

  4. Kumar A, Anel R, Bunnel E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    Article  PubMed  Google Scholar 

  5. Raper R, Sibald WJ (1984) Misled by the wedge? The Swan-Ganz catheter and left ventricular preload Chest 89:427–434

    Google Scholar 

  6. Teboul JL, Pinsky MR, Mercat A et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636

    Article  PubMed  CAS  Google Scholar 

  7. Tavernier B, Makhotine O, Lebuffe G et al (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis induced hypotension. Anesthesiology 89:1313–1321

    Article  PubMed  CAS  Google Scholar 

  8. Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355

    Article  PubMed  CAS  Google Scholar 

  9. Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68:150–156

    PubMed  CAS  Google Scholar 

  10. Szold A, Pizov R, Segal E et al (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15:368–371

    Article  PubMed  CAS  Google Scholar 

  11. Jardin F, Farcot JC, Gueret P et al (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274

    PubMed  CAS  Google Scholar 

  12. Theres H, Binkau J, Laule M et al (1999) Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end expiratory pressure. Crit Care Med 27:953–958

    Article  PubMed  CAS  Google Scholar 

  13. Brower R, Wise RA, Hassapoyannes C et al (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58:954–963

    Article  PubMed  CAS  Google Scholar 

  14. Michard F, Teboul JL (2000) Respiratory changes in arterial pressure in mechanically ventilated patients. In: Vincent J-L (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin, pp 696–704

    Google Scholar 

  15. Berkenstadt H, Margalit N, Hadani M et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989

    Article  PubMed  CAS  Google Scholar 

  16. Hofer CK, Müler SM, Furre L et al (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128:848–854

    Article  PubMed  Google Scholar 

  17. Reuter DA, Goepfert MSG, Goresch T et al (2005) Assessing fluid responsiveness during open chest conditions. Br J Anaesth 94:318–323

    Article  PubMed  CAS  Google Scholar 

  18. Michard F, Boussat S, Chemla D et al (2000) Relationship between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Resp Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  19. Singer M, Clark J, Bennet ED (1989) Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med 17:447–452

    Article  PubMed  CAS  Google Scholar 

  20. Boulnois JL, Pechoux T (2000) Non-invasive cardic output monitoring by aortic blood flow measurement with the Dynemo 3000. J Clin Monit Comput 16:127–140

    Article  PubMed  CAS  Google Scholar 

  21. Slama M, Masson H, Teboul JL et al (2004) Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intensive Care Med 30:1182–1187

    Article  PubMed  Google Scholar 

  22. Monnet X, Rienzo M, Osman D et al (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31:1195–1201

    Article  PubMed  Google Scholar 

  23. Feissel M, Michard F, Mangin I et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873

    Article  PubMed  CAS  Google Scholar 

  24. Kircher BJ, Himelman RB, Schiller NB (1990) Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 66:493–496

    Article  PubMed  CAS  Google Scholar 

  25. Feissel M, Michard F, Mangin I et al (2002) Respiratory changes in inferior vena cava diameter predict fluid responsiveness in septic shock (abstract). Am J Resp Crit Care Med 165(Suppl):A712

    Google Scholar 

  26. Vieillard-Baron A, Augarde R, Prin S et al (2001) Influence of superior vena caval zone condition on cyclic change in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    Article  PubMed  CAS  Google Scholar 

  27. Vieillard-Baron A, Chergui K, Rabiller A et al (2004) Superior vena cava collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    PubMed  Google Scholar 

  28. Vieillard-Baron A (2006) Pulse pressure variations in managing fluid requirement: beware the pitfalls! In: Vincent J-L (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin, pp 185–191

    Chapter  Google Scholar 

  29. Reuter D, Felbinger T, Schmidt C et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  30. Gattinoni L, Pelosi P, Suter P et al (1998) Acute respiratory distress syndrome caused by pulmonary and extra-pulmonary disease. Different syndromes? Am J Resp Crit Care Med 156: 3–11

    Google Scholar 

  31. De Backer D, Heenen S, Piagnerelli M et al (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  32. Schlichtig R, Kramer D, Pinsky MR (1991) Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol 70:169–178

    PubMed  CAS  Google Scholar 

  33. Pinsky MR (2002) Functional hemodynamic monitoring: applied physiology at the bedside. Springer, Berlin, pp 537–552

    Google Scholar 

  34. Sunagawa K, Maughn WL, Burkoff (1983) Left ventricular interaction with arterial load studied in the isolated canine ventricle. Am J Physiol 245:H733–H788

    Google Scholar 

  35. Tuchschmidt J, Fired J, Astiz M et al (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102:216–220

    PubMed  CAS  Google Scholar 

  36. Sagawa K (1981) The end-systolic pressure-volume relation of the ventricle: definition, modification, and clinical use. Circulation 63:1223–1227

    PubMed  CAS  Google Scholar 

  37. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126

    PubMed  CAS  Google Scholar 

  38. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  CAS  Google Scholar 

  39. Snell R, Luchsinger P (1965) Determination of the external work and power of the left ventricle in intact man. Am Heart J 69:529–537

    Article  PubMed  CAS  Google Scholar 

  40. Stein P, Sabbah H (1976) Rate of change of ventricular power: an indicator of ventricular performance during ejection. Am Heart J 91:219–227

    Article  PubMed  CAS  Google Scholar 

  41. Cotter G, Williams SG, Vered Z (2003) Role of cardiac power in heart failure. Curr Opin Cardiol 18:215–222

    Article  PubMed  Google Scholar 

  42. Schmidt C, Roosens C, Struys M et al (1999) Contractility in humans after coronary artery surgery: echocardiographic assessment with preload-adjusted maximal power. Anaesthesiology 91:58–70

    Article  CAS  Google Scholar 

  43. Kass D, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84:1698–1708

    PubMed  CAS  Google Scholar 

  44. Nakayama M, Chen CH, Nevo E et al (1998) Optimal pre-load adjustment of maximal ventricular power index varies with cardiac chamber size. Am Heart J 136:281–288

    Article  PubMed  CAS  Google Scholar 

  45. Amà R, Claessens T, Roosens C et al (2005) A comparative study of preload adjustment maximal and peak power: assessment of ventricular performance in clinical practice. Anaesthesia 60:35–40

    Article  PubMed  Google Scholar 

  46. Marmor A, Raphael T, Marmor M et al. (1996) Evaluation of contractile reserve by dobutamine echocardiography: non-invasive estimation of the severity of heart failure. Am Heart J 132:1195–1201

    Article  PubMed  CAS  Google Scholar 

  47. Sunagawa K, Sugimachi M, Todako K et al. (1993) Optimal coupling of the left ventricle with the arterial system. Basic Res Cardiol 88:75–90

    PubMed  Google Scholar 

  48. Sunagawa K, Sagawa K, Maughan WL (1984) Ventricular interaction with the loading system. Ann Biomed Eng 12:163–189

    PubMed  CAS  Google Scholar 

  49. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595

    PubMed  CAS  Google Scholar 

  50. Romano SM, Pistolesi M (2002) Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med 30:1834–1841

    Article  PubMed  Google Scholar 

  51. Giomarelli P, Biagioli B, Scolletta S (2004) Cardiac output monitoring by pressure recording analytical method in cardiac surgery. Eur J Cardiothorac Surg 26:515–520

    Article  PubMed  Google Scholar 

  52. Scolletta S, Romano SM, Biagioli B et al. (2005) Pressure recording analytical method (PRAM) for measurement of cardiac output during various haemodynamic states. Br J Anaesth 95:159–65

    Article  PubMed  CAS  Google Scholar 

  53. O’Rourke MF (1982) Vascular impedance in studies of arterial and cardiac function. Physiol Rev 62:570–623

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Sorbara, C., Romagnoli, S., Rossi, A., Romano, S.M. (2007). Circulatory Failure: Bedside Functional Hemodynamic Monitoring. In: Perioperative Critical Care Cardiology. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-0558-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0558-7_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0557-0

  • Online ISBN: 978-88-470-0558-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics