Advertisement

Prevention and Management of Cardiac Dysfunction during and after Cardiac Surgery

  • W. Moosbauer
  • A. Hofer
  • H. Gombotz
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)

Abstract

Surgery is analogous to an extreme stress test. It initiates inflammatory, hypercoagulable, stress, and hypoxic states, which may be associated with elevations in troponin levels leading to postoperative myocardial dysfunction and failure [1]. Cardiac surgery, especially, is associated with the inherent risk of myocardial ischemia and myocardial infarction; and consequently, with postoperative heart failure. The degree of permanent postoperative myocardial injury is determined by the severity and duration of ischemia. A progressive pattern of myocardial dysfunction-apart from ongoing ischemia-suggests that additional underlying mechanisms, which are at least partially different from those of myocardial stunning, may also exist [2].

Keywords

Pulmonary Capillary Wedge Pressure Myocardial Protection Noncardiac Surgery Postoperative Atrial Fibrillation Cardioplegic Arrest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Devereaux PJ, Goldman L, Cook DJ et al (2005) Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ 173:627–634PubMedGoogle Scholar
  2. 2.
    Liakopoulos OJ, Muhlfeld C, Koschinsky M et al (2005) Progressive loss of myocardial contractile function despite unimpaired coronary blood flow after cardiac surgery. Basic Res Cardiol 100:75–83PubMedCrossRefGoogle Scholar
  3. 3.
    Surgenor SD, O’Connor GT, Lahey SJ et al (2001) Predicting the risk of death from heart failure after coronary artery bypass graft surgery. Anesth Analg 92:596–601PubMedCrossRefGoogle Scholar
  4. 4.
    Gardner SC, Grunwald GK, Rumsfeld JS et al (2001) Risk factors for intermediate-term survival after coronary artery bypass grafting. Ann Thorac Surg 72:2033–2037PubMedCrossRefGoogle Scholar
  5. 5.
    Royster RL (1993) Myocardial dysfunction following cardiopulmonary bypass: recovery patterns, predictors of inotropic need, theoretical concepts of inotropic administration. J Cardiothorac Vasc Anesth 7:19–25PubMedCrossRefGoogle Scholar
  6. 6.
    Khan NE, De Souza A, Mister R et al (2004) A randomized comparison of off-pump and on-pump multivessel coronary-artery bypass surgery. N Engl J Med 350:21–28PubMedCrossRefGoogle Scholar
  7. 7.
    Argenziano M, Spotnitz HM, Whang W et al (1999) risk stratification for coronary bypass surgery in patients with left ventricular dysfunction: analysis of the Coronary Artery Bypass Grafting Patch Trial database. Circulation 100:119II–124Google Scholar
  8. 8.
    Mangano DT (1985) Biventricular function after myocardial revascularization in humans: deterioration and recovery patterns during the first 24 hours. Anesthesiology 62:571–577PubMedCrossRefGoogle Scholar
  9. 9.
    Vanky FB, Hakanson E, Tamas E et al (2006) Risk factors for postoperative heart failure in patients operated on for aortic stenosis. Ann Thorac Surg 81:1297–1304PubMedCrossRefGoogle Scholar
  10. 10.
    Corin WJ, Sutsch G, Murakami T et al (1995) Left ventricular function in chronic mitral regurgitation: preoperative and postoperative comparison. J Am Coll Cardiol 25:113–121PubMedCrossRefGoogle Scholar
  11. 11.
    Slogoff S, Keats AS (1985) Does perioperative myocardial ischemia lead to postoperative myocardial infarction? Anesthesiology 62:107–114PubMedCrossRefGoogle Scholar
  12. 12.
    Fillinger MP, Surgenor SD, Hartman GS et al (2002) The association between heart rate and in-hospital mortality after coronary artery bypass graft surgery. Anesth Analg 95:1483–1488PubMedCrossRefGoogle Scholar
  13. 13.
    Leung JM, O’Kelly B, Browner WS et al (1989) Prognostic importance of postbypass regional wall-motion abnormalities in patients undergoing coronary artery bypass graft surgery. SPI Research Group. Anesthesiology 71:16–25PubMedCrossRefGoogle Scholar
  14. 14.
    Thielmann M, Massoudy P, Neuhauser M et al (2006) Prognostic value of preoperative cardiac troponin I in patients undergoing emergency coronary artery bypass surgery with non-ST-elevation or ST-elevation acute coronary syndromes. Circulation 114: I448–I453PubMedGoogle Scholar
  15. 15.
    Kirklin JW, Conti VR, Blackstone EH (1979) Prevention of myocardial damage during cardiac operations. N Engl J Med 301:135–141PubMedCrossRefGoogle Scholar
  16. 16.
    Kay HR, Levine FH, Fallon JT et al (1978) Effect of cross-clamp time, temperature, and cardioplegic agents on myocardial function after induced arrest. J Thorac Cardiovasc Surg 76:590–603PubMedGoogle Scholar
  17. 17.
    Fremes SE, Tamariz MG, Abramov D et al (2000) Late results of the Warm Heart Trial: the influence of nonfatal cardiac events on late survival. Circulation 102:339III–345Google Scholar
  18. 18.
    Fukunami M, Hearse DJ (1989) The inotropic consequences of cooling: studies in the isolated rat heart. Heart Vessels 5:1–9PubMedCrossRefGoogle Scholar
  19. 19.
    Guru V, Omura J, Alghamdi AA et al (2006) Is blood superior to crystalloid cardioplegia?: a meta-analysis of randomized clinical trials. Circulation 114: I-331CrossRefGoogle Scholar
  20. 20.
    Banach M, Rysz J, Drozdz JA et al (2006) Risk factors of atrial fibrillation following coronary artery bypass grafting: a preliminary report. Circ J 70:438–441PubMedCrossRefGoogle Scholar
  21. 21.
    Tripp HF, Bolton JW (1998) Phrenic nerve injury following cardiac surgery: a review. J Card Surg 13:218–223PubMedCrossRefGoogle Scholar
  22. 22.
    Kevin LG, Novalija E, Stowe DF (2005) Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg 101:1275–1287PubMedCrossRefGoogle Scholar
  23. 23.
    Kloner RA, Jennings RB. (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: Part 1. Circulation 104:2981–2989PubMedGoogle Scholar
  24. 24.
    Casthely PA, Shah C, Mekhjian H et al (1997) Left ventricular diastolic function after coronary artery bypass grafting: a correlative study with three different myocardial protection techniques. J Thorac Cardiovasc Surg 114:254–260PubMedCrossRefGoogle Scholar
  25. 25.
    Glavind-Kristensen M, Brix-Christensen V, Toennesen E et al (2002) Pulmonary endothelial dysfunction after cardiopulmonary bypass in neonatal pigs. Acta Anaesthesiol Scand 46:853–859PubMedCrossRefGoogle Scholar
  26. 26.
    Toller WG, Kersten JR, Pagel PS et al (1999) Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology 91:1437–1446PubMedCrossRefGoogle Scholar
  27. 27.
    De Hert SG, Van der Linden PJ, Cromheecke S et al (2004) Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 101:299–310PubMedCrossRefGoogle Scholar
  28. 28.
    Conzen PF, Fischer S, Detter C et al (2003) Sevoflurane provides greater protection of the myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology 99:826–833PubMedCrossRefGoogle Scholar
  29. 29.
    Nader ND, Li CM, Khadra WZ et al (2004) Anesthetic myocardial protection with sevoflurane. J Cardiothorac Vasc Anesth 18:269–274PubMedCrossRefGoogle Scholar
  30. 30.
    Mangano DT, Layug EL, Wallace A et al (1996) Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. N Engl J Med 335:1713–1721PubMedCrossRefGoogle Scholar
  31. 31.
    Fleisher LA, Beckman JA, Brown KA et al (2006) ACC/AHA 2006 Guideline update on perioperative cardiovascular evaluation for noncardiac surgery: focused update on perioperative beta-blocker therapy: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). Circulation 113:2662–2674PubMedCrossRefGoogle Scholar
  32. 32.
    Giles JW, Sear JW and Foex P. (2004) Effect of chronic beta-blockade on peri-operative outcome in patients undergoing non-cardiac surgery: an analysis of observational and case control studies. Anaesthesia 59:574–583PubMedCrossRefGoogle Scholar
  33. 33.
    Nette AF, Abraham G, Ungemach FR et al (2005) Interaction between simvastatin and metoprolol with respect to cardiac beta-adrenoceptor density, catecholamine levels and perioperative catecholamine requirements in cardiac surgery patients. Naunyn Schmiedebergs Arch Pharmacol 372:115–124PubMedCrossRefGoogle Scholar
  34. 34.
    Poldermans D, Boersma E, Bax JJ et al (1999) The effect of bisoprolol on perioperative mortality and myocardial infarction in high-risk patients undergoing vascular surgery. N Engl J Med 341:1789–1794PubMedCrossRefGoogle Scholar
  35. 35.
    Akhtar S, Amin M, Tantawy H et al (2005) Preoperative beta-blocker use: is titration to a heart rate of 60 beats per minute a consistently attainable goal? J Clin Anesth 17:191–197PubMedCrossRefGoogle Scholar
  36. 36.
    Ferguson TB Jr, Coombs LP, Peterson ED (2002) Preoperative beta-blocker use and mortality and morbidity following CABG surgery in North America. JAMA 287:2221–2227PubMedCrossRefGoogle Scholar
  37. 37.
    ten Broecke PWC, De Hert SG, Mertens E et al (2003) Effect of preoperative ?-blockade on perioperative mortality in coronary surgery. Br J Anaesth 90:27–31PubMedCrossRefGoogle Scholar
  38. 38.
    Toller WG, Stranz C (2006) Levosimendan, a new inotropic and vasodilator agent. Anesthesiology 104:556–569PubMedCrossRefGoogle Scholar
  39. 39.
    Follath F, Cleland JG, Just H et al (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 360:196–202PubMedCrossRefGoogle Scholar
  40. 40.
    Morelli A, Teboul JL, Maggiore SM et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293PubMedCrossRefGoogle Scholar
  41. 41.
    Al-Shawaf E, Ayed A, Vislocky I et al (2006) Levosimendan or milrinone in the type 2 diabetic patient with low ejection fraction undergoing elective coronary artery surgery. J Cardiothorac Vasc Anesth 20:353–357PubMedCrossRefGoogle Scholar
  42. 42.
    Sonntag S, Sundberg S, Lehtonen LA et al (2004) The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia. J Am Coll Cardiol 43:2177–2182PubMedCrossRefGoogle Scholar
  43. 43.
    Barisin S, Husedzinovic I, Sonicki Z et al (2004) Levosimendan in off-pump coronary artery bypass: a four-times masked controlled study. J Cardiovasc Pharmacol 44:703–708PubMedCrossRefGoogle Scholar
  44. 44.
    Nijhawan N, Nicolosi AC, Montgomery MW et al (1999) Levosimendan enhances cardiac performance after cardiopulmonary bypass: a prospective, randomized placebo-controlled trial. J Cardiovasc Pharmacol 34:219–228PubMedCrossRefGoogle Scholar
  45. 45.
    Tritapepe L, De S, V, Vitale D et al (2006) Preconditioning effects of levosimendan in coronary artery bypass grafting-a pilot study. Br J Anaesth 96:694–700PubMedCrossRefGoogle Scholar
  46. 46.
    Christenson JT, Cohen M (2002) Preoperative IABP in high-risk patients reduces postoperative lactate release and subsequent mortality. Ann Thorac Surg 73:1026–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • W. Moosbauer
    • 1
  • A. Hofer
    • 1
  • H. Gombotz
    • 1
  1. 1.Department of Anesthesiology and Intensive CareGeneral Hospital LinzAustria

Personalised recommendations