Advertisement

Updates on Cardiac Arrest and Cardiopulmonary Resuscitation

  • G. Ristagno
  • A. Gullo
  • W. Tang
  • M. H. Weil
Part of the Topics in Anaesthesia and Critical Care book series (TIACC)

Abstract

Cardiac arrest is a dramatic clinical event that can occur suddenly, often without premonitory signs. The condition is characterized by sudden loss of consciousness due to the lack of cerebral blood flow, which occurs when the heart ceases to pump. This phenomenon is potentially reversible if cardiopulmonary resuscitation (CPR) procedures are started early, but it becomes irreversible without interventions or when initiation of CPR is delayed [1].

Keywords

Cardiac Arrest Cardiopulmonary Resuscitation Chest Compression Basic Life Support Coronary Perfusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gullo A (2002) Cardiac arrest, chain of survival and Utstein style. Eur J Anaesthesiol 19:624–633PubMedCrossRefGoogle Scholar
  2. 2.
    Weil MH, Sun S (2005) Clinical review: Devices and drugs for cardiopulmonary resuscitation—opportunities and restraints. Crit Care 9:287–290PubMedCrossRefGoogle Scholar
  3. 3.
    Cummins RO, Eisenberg MS (1985) Prehospital cardiopulmonary resuscitation; is it effective? JAMA 253:2408–2412PubMedCrossRefGoogle Scholar
  4. 4.
    International Liaison Committee on Resuscitation (2005) Part 2: Adult basic life support. Resuscitation 67:187–201CrossRefGoogle Scholar
  5. 5.
    Sanders AB, Ewy GA (2005) Cardiopulmonary resuscitation in the real world: when will the guidelines get the message? JAMA 293:363–365PubMedCrossRefGoogle Scholar
  6. 6.
    Nichol G, Stiell IG, Laupacis A et al (1999) A cumulative meta-analysis of the effectiveness of defibrillator-capable emergency medical services for victims of out-ofhospital cardiac arrest. Ann Emerg Med 34:517–525PubMedCrossRefGoogle Scholar
  7. 7.
    Engdahl J, Bang A, Lindqvist J et al (2003) Time trends in long-term mortality after out-of-hospital cardiac arrest, 1980 to 1998, and predictors for death. Am Heart J 145:749–750CrossRefGoogle Scholar
  8. 8.
    Eisenberg MS, Horwood BT, Cummins RO et al (1990) Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 19:179–186PubMedCrossRefGoogle Scholar
  9. 9.
    Becker LB, Ostrander MP, Barrett J et al (1991) Outcome of cardiopulmonary resuscitation in a large metropolitan area: where are the survivors? Ann Emerg Med 20:355–361PubMedCrossRefGoogle Scholar
  10. 10.
    Caffrey SL, Willoughby PJ, Pepe PE et al (2002) Public use of automated external defibrillators. N Engl J Med 347:1242–1247PubMedCrossRefGoogle Scholar
  11. 11.
    Larsen MP, Eisenberg MS, Cummins RO, et al. (1993) Predicting survival from outof-hospital cardiac arrest: a graphic model. Ann Emerg Med 22:1652–1658PubMedCrossRefGoogle Scholar
  12. 12.
    Rea TD, Eisenberg MS, Culley LL et al (2001) Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest. Circulation 104:2513–2516PubMedGoogle Scholar
  13. 13.
    White RD (1997) Optimal access to—response by—public and voluntary services, including the role of bystanders and family members, in cardiopulmonary resuscitation. New Horiz 5:153–157PubMedGoogle Scholar
  14. 14.
    Cummins RO, Ornato JP, Thies WH et al (1991) Improving survival from sudden cardiac arrest: the “chain of survival” concept. A statement for health professionals from the 20 Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation 83:1832–184PubMedGoogle Scholar
  15. 15.
    Jacobs I, Nadkarni V, Barh J et al (2004) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation. Circulation 110:3385–3397PubMedCrossRefGoogle Scholar
  16. 16.
    American Heart Association (2005) 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 3: Overview of CPR. Circulation 112(24 Suppl):IV-12–18Google Scholar
  17. 17.
    Herlitz J, Ekstrom L, Wennerblom B et al (1994) Effects of bystander initiated cardiopulmonary resuscitation on ventricular fibrillation and survival after witnessed cardiac arrest outside hospital. Br Heart J 72:408–412PubMedGoogle Scholar
  18. 18.
    Wik L, Steen PA, Bircher NG (1994) Quality of bystander cardiopulmonary resuscitation influences outcome after prehospital cardiac arrest. Resuscitation 28:195–203PubMedCrossRefGoogle Scholar
  19. 19.
    Wik L, Kramer-Johansen J, Myklebust H et al. (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304PubMedCrossRefGoogle Scholar
  20. 20.
    No authors listed (2000) Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science. Circulation 102(8 Suppl):I1–I403Google Scholar
  21. 21.
    Abella BS, Sandbo N, Alvarado JP et al (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293:305–310PubMedCrossRefGoogle Scholar
  22. 22.
    Abella BS, Sandbo N, Vassilatos P et al (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal. Circulation 111:428–434PubMedCrossRefGoogle Scholar
  23. 23.
    Aufderheide TP, Sigurdsson G, Pirrallo RG et al (2004) Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 109:1960–1965PubMedCrossRefGoogle Scholar
  24. 24.
    Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR. I: Studies on closed chest precordial compression. Chest 95:1092–1099PubMedGoogle Scholar
  25. 25.
    Sanders AB, Kern KB, Atlas M et al (1985) Importance of the duration of inadequate coronary perfusion pressure on resuscitation from cardiac arrest. J Am Coll Cardiol 6:113–118PubMedGoogle Scholar
  26. 26.
    Sanders AB, Ogle M, Ewy GA (1985) Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med 2:11–14CrossRefGoogle Scholar
  27. 27.
    Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Circulation 106:368–372PubMedCrossRefGoogle Scholar
  28. 28.
    Paradis NA, Martin GB, Rivers EP et al (1990) Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 263:1106–1113PubMedCrossRefGoogle Scholar
  29. 29.
    Sanders AB, Kern KB, Berg RA et al (2002) Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med 40:553–562PubMedCrossRefGoogle Scholar
  30. 30.
    Yannopoulos D, McKnite SH, Tang W et al (2005) Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care 50:628–635PubMedGoogle Scholar
  31. 31.
    Tang W, Weil MH, Sun S et al (1994) Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation. Am J Respir Crit Care Med 150(6Pt1):1709–1713PubMedGoogle Scholar
  32. 32.
    Noc M, Weil MH, Tang W et al (1995) Mechanical ventilation may not be essential for initial cardiopulmonary resuscitation. Chest 108:821–827PubMedGoogle Scholar
  33. 33.
    Noc M, Weil MH, Tang W et al (1994) Spontaneous gasping during cardiopulmonary resuscitation without mechanical ventilation. Am J Respir Crit Care Med 150:861–864PubMedGoogle Scholar
  34. 34.
    Fukui M, Weil MH, Tang W et al (1995) Airway protection during experimental CPR. Chest 108:1663–1667PubMedGoogle Scholar
  35. 35.
    Babbs CF, Kern KB (2002) Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation 54:147–157PubMedCrossRefGoogle Scholar
  36. 36.
    Weil MH, Tang W (1997) Cardiopulmonary resuscitation: a promise as yet largely unfulfilled. Dis Mon 43:429–501PubMedGoogle Scholar
  37. 37.
    Kern KB, Hilwig RW, Berg RA et al (2002) Importance of continuous chest compressions during cardiopulmonary resuscitation. Improved outcome during a simulated single lay-rescuer scenario. Circulation 105:645–649PubMedCrossRefGoogle Scholar
  38. 38.
    Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470PubMedGoogle Scholar
  39. 39.
    No authors listed (2000) Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 3: Adult basic life support. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Circulation 102(8Suppl):I22–I59Google Scholar
  40. 40.
    Eisemberg MS, Copass MK, Hallstrom AP et al (1980) Treatment of out-of-hospital cardiac arrests with rapid defibrillation by emergency medical technicians. N Engl J Med 302:1379–1383CrossRefGoogle Scholar
  41. 41.
    Valenzuela TD, Roe DJ, Nichol G et al (2000) Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 343:1206–1209PubMedCrossRefGoogle Scholar
  42. 42.
    White R, Asplin B, Bugliosi T et al (1996) High discharge survival rate after out-of-hospital ventricular fibrillation with rapid defibrillation by police and paramedics. Ann Emerg Med 28:480–485PubMedCrossRefGoogle Scholar
  43. 43.
    Cobb LA, Fahrenbruch CE, Walsh TR et al (1999) Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 281:1182–1188PubMedCrossRefGoogle Scholar
  44. 44.
    Wik L, Hansen TB, Fylling F et al (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation. JAMA 289:1389–1395PubMedCrossRefGoogle Scholar
  45. 45.
    Niemann JT, Cairns CB, Sharma J et al (1992) Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 85:281–287PubMedGoogle Scholar
  46. 46.
    Berg RA, Hilwig RW, Ewy GA et al (2004) Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study. Crit Care Med 32:1352–1357PubMedCrossRefGoogle Scholar
  47. 47.
    International Liaison Committee on Resuscitation (2005) Part 3: Defibrillation. Resuscitation 67:203–211CrossRefGoogle Scholar
  48. 48.
    Johnson BA, Weil MH, Tang W et al (1995) Mechanisms of myocardial hypercarbic acidosis during cardiac arrest. J Appl Physiol 78:1579–1584PubMedGoogle Scholar
  49. 49.
    Kern KB, Garewal HS, Sanders AB et al (1990) Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resuscitation 20:221–229PubMedCrossRefGoogle Scholar
  50. 50.
    Steen S, Liao Q, Pierre L et al (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258PubMedCrossRefGoogle Scholar
  51. 51.
    Klouche K, Weil MH, Sun S et al (2000) Echo-Doppler observations during cardiac arrest and cardiopulmonary resuscitation. Crit Care Med 28(11 Suppl):N212–N213PubMedCrossRefGoogle Scholar
  52. 52.
    Klouche K, Weil MH, Sun S et al (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122:1006–1011PubMedCrossRefGoogle Scholar
  53. 53.
    Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR. I: Studies on closed chest precordial compression. Chest 95:1092–1099PubMedGoogle Scholar
  54. 54.
    Weisfeldt ML, Becker LB (2002) Resuscitation after cardiac arrest: a 3-phase times-ensitive model. JAMA 288:3035–3038PubMedCrossRefGoogle Scholar
  55. 55.
    Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688PubMedGoogle Scholar
  56. 56.
    Snyder D, Morgan C (2004) Wide variation in cardiopulmonary resuscitation interruption intervals among commercially available automated external defibrillators may affect survival despite high defibrillation efficacy. Crit Care Med 32(9 Suppl):S421–S424PubMedCrossRefGoogle Scholar
  57. 57.
    Yu T, Weil MH, Tang W et al (2002) Adverse outcome of interrupted precordial compression during automated defibrillation. Cirulation 106:368–372CrossRefGoogle Scholar
  58. 58.
    Sato Y, Weil MH, Sun S et al (1997) Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit Care Med 25:733–736PubMedCrossRefGoogle Scholar
  59. 59.
    Hess EP, White RD (2005) Ventricular fibrillation is not provoked by chest compression during post-shock organized rhythms in out-of-hospital cardiac arrest. Resuscitation 66:7–11PubMedCrossRefGoogle Scholar
  60. 60.
    Bain AC, Swerdlow CD, Love JC et al (2001) Multicenter study of principles-based waveforms for external defibrillation. Ann Emerg Med 37:5–12PubMedCrossRefGoogle Scholar
  61. 61.
    Poole JE, White RD, Kanz KG et al (1997) Low-energy impedance-compensating biphasic waveforms terminate ventricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. LIFE investigators. J Cardiovasc Electrophysiol 8:1373–1385PubMedGoogle Scholar
  62. 62.
    Greene HL, Di Marco JP, Kudenchuk PJ et al (1995) Comparison of monophasic and biphasic defibrillating pulse waveforms for transthoracic cardioversion. Am J Cardiol 75:1135–1139PubMedCrossRefGoogle Scholar
  63. 63.
    Schneider T, Martens PR, Paschen H et al (2000) Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200-to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Circulation 102:1780–1787PubMedGoogle Scholar
  64. 64.
    Tang W, Weil MH, Sun S et al (2001) A comparison of biphasic and monophasic waveform defibrillation after prolonged ventricular fibrillation. Chest 103:948–954CrossRefGoogle Scholar
  65. 65.
    Tang W, Weil MH, Sun S et al (1999) The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. J Am Coll Cardiol 34:815–822PubMedCrossRefGoogle Scholar
  66. 66.
    Pellis T, Weil MH, Tang W et al (2003) Evidence favoring the use of an β2-selective vasopressor agent for cardiopulmonary resuscitation. Circulation 108:2716PubMedCrossRefGoogle Scholar
  67. 67.
    Lewis CM, Weil MH (1969) Hemodynamic spectrum of vasopressor and vasodilator drugs. JAMA 208:1391–1398PubMedCrossRefGoogle Scholar
  68. 68.
    No authors listed (2005) 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 112:25–54Google Scholar
  69. 69.
    Ditchey RV, Lindenfeld J (1988) Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 78:382–389PubMedGoogle Scholar
  70. 70.
    Tang W, Weil MH, Sun S et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093PubMedGoogle Scholar
  71. 71.
    Cammarata G, Weil MH, Sun S et al (2004) Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med 32(9 Suppl):S440–S443PubMedCrossRefGoogle Scholar
  72. 72.
    Huang L, Weil MH, Cammarata G et al (2004) Nonselective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model. Crit Care Med 32(9 Suppl):S378–S380PubMedCrossRefGoogle Scholar
  73. 73.
    Grupp IL, Lorenz JN, Walsh RA et al (1998) Overexpression of alpha 1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 275:H1338–H1350PubMedGoogle Scholar
  74. 74.
    Gregorini L, Marco J, Kozakova M et al (1999) Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 99:482–490PubMedGoogle Scholar
  75. 75.
    Sun S, Weil MH, Tang W et al (2001) Alpha-methylnorepinephrine, a selective alpha-2 adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol 37:951–956PubMedCrossRefGoogle Scholar
  76. 76.
    Klouche K, Weil MH, Sun S et al (2003) A comparison of alpha-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation 57:93–100PubMedCrossRefGoogle Scholar
  77. 77.
    Ishibashi Y, Duncker DJ, Bache RJ (1997) Endogenous nitric oxide masks alpha2-adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 80:196–207PubMedGoogle Scholar
  78. 78.
    Fries M, Tang W, Castillo C et al (2004) Detrimental effects of epinephrine on microcirculatory blood flow in a porcine model of cardiac arrest. Crit Care Med 32(Suppl):A56CrossRefGoogle Scholar
  79. 79.
    Ristagno G, Sun S, Chang YT et al (2005) Epinephrine reduces cerebral microcirculatory blood flow during CPR. Crit Care Med 33(Suppl):A95Google Scholar
  80. 80.
    Povoas HP, Weil MH, Tang W et al (2002) Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 53:77–82PubMedCrossRefGoogle Scholar
  81. 81.
    Young C, Bisera J, Gehman S et al (2004) Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 32(9 Suppl):S356–S358PubMedCrossRefGoogle Scholar
  82. 82.
    Weil MH, Bisera J, Trevino RP et al (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909PubMedCrossRefGoogle Scholar
  83. 83.
    Pernat A, Weil MH, Sun S et al (2003) Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Crit Care Med 31:1819–1823PubMedCrossRefGoogle Scholar
  84. 84.
    Kalenda Z (1978) The capnogram as a guide to the efficacy of cardiac massage. Resuscitation 6:259–263PubMedCrossRefGoogle Scholar
  85. 85.
    Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318:607–611PubMedCrossRefGoogle Scholar
  86. 86.
    Tang W, Weil MH, Gazmuri RJ et al (1991) Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation 84:2101–2107PubMedGoogle Scholar
  87. 87.
    Fries M, Weil MH, Chang YT et al (2006) Capillary blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation (in press≪QA5≫)Google Scholar
  88. 88.
    Pernat A, Weil MH, Tang W et al. (2001) Optimizing timing of ventricular defibrillation. Crit Care Med 29:2360–2365PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • G. Ristagno
    • 1
  • A. Gullo
    • 2
  • W. Tang
    • 1
    • 3
  • M. H. Weil
    • 1
    • 3
    • 4
  1. 1.Weil Institute of Critical Care MedicineRancho MirageUSA
  2. 2.UCO Anestesia e RianimazioneAzienda Ospedaliero-UniversitariaPoliclinico di Catania
  3. 3.Keck School of Medicine of the University of Southern CaliforniaLos AngelesUSA
  4. 4.Northwestern University Medical SchoolChicagoUSA

Personalised recommendations