Cachexia: Therapeutic Immunomodulation Beyond Cytokine Antagonism

  • Stephan von Haehling
  • Stefan D. Anker


Cachexia is frequently observed in a number of different chronic illnesses. Although a final common pathway has not yet been established, a number of features have been recognised irrespective of underlying aetiology. These aspects of the disease include activation of the immune system, muscle wasting through the ubiquitin-proteasome pathway and endothelial dysfunction. Targeting these aspects of cachexia involves downstream signalling of proinflammatory cytokines, proteasome inhibition and possibly the use of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins). Apart from their cholesterollowering features, the latter class of drugs has recently been shown to improve endothelial dysfunction, to induce endothelial progenitor cells, and to have anti-inflammatory properties. These features have recently b een termed p leiotropic effects of statins. It is therefore tempting to speculate that cachectic patients will benefit from treatment with statins, and possibly also from immunosuppression per se.


Chronic Heart Failure Statin Therapy Proteasome Inhibitor Endothelial Progenitor Cell Cancer Cachexia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levine B, Kaiman J, Mayer L et al (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241PubMedCrossRefGoogle Scholar
  2. 2.
    Argiles JM, Lopez-Soriano FJ (1999) The role of cytokines in cancer cachexia. Med Res Rev 19:223–248PubMedCrossRefGoogle Scholar
  3. 3.
    Roubenoff R, Roubenoff RA, Cannon JG et al (1994) Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 93:2379–2386PubMedGoogle Scholar
  4. 4.
    Anker SD, Egerer KR, Volk HD et al (1997) Elevated soluble CD 14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79:1426–1430PubMedCrossRefGoogle Scholar
  5. 5.
    Anker SD, Clark AL, Teixeira MM et al (1999) Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol 83:612–615PubMedCrossRefGoogle Scholar
  6. 6.
    von Haehling S, Genth-Zotz S, Anker SD, Volk HD (2002) Cachexia: a therapeutic approach beyond cytokine antagonism. Int J Cardiol 85:173–183PubMedCrossRefGoogle Scholar
  7. 7.
    Cerami A, Ikeda Y, Le Trang N et al (1985) Weight loss associated with an endotoxin-induced mediator from peritoneal macrophages: the role of cachectin (tumor necrosis factor). Immunol Lett 11:173–177PubMedCrossRefGoogle Scholar
  8. 8.
    Anker SD, Volterrani M, Egerer KR et al (1998) Tumour necrosis factor alpha as a predictor of impaired peak leg blood flow in patients with chronic heart failure. QJM 91:199–203PubMedCrossRefGoogle Scholar
  9. 9.
    Ceconi C, Curello S, Bachetti T et al (1998) Tumor necrosis factor in congestive heart failure: a mechanism of disease for the new millennium? Prog Cardiovasc Dis 41:25–30PubMedCrossRefGoogle Scholar
  10. 10.
    Anker SD, Ponikowski PP, Clark AL et al (1999) Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 20:683–693PubMedCrossRefGoogle Scholar
  11. 11.
    von Haehling S, Jankowska EA, Anker SD (2004) Tumour necrosis factor-alpha and the failing heart—pathophysiology and therapeutic implications. Basic Res Cardiol 99:18–28PubMedCrossRefGoogle Scholar
  12. 12.
    Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90:464–470PubMedCrossRefGoogle Scholar
  13. 13.
    Rauchhaus M, Doehner W, Francis DP et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067PubMedGoogle Scholar
  14. 14.
    Cederholm T, Wretlind B, Hellstrom K et al (1997) Enhanced generation of interleukins 1 beta and 6 may contribute to the cachexia of chronic disease. Am J Clin Nutr 65:876–882PubMedGoogle Scholar
  15. 15.
    Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:74–80PubMedCrossRefGoogle Scholar
  16. 16.
    Kotler DP. Cachexia (2000) Ann Intern Med 133:622–634PubMedGoogle Scholar
  17. 17.
    Llovera M, Garcia-Martinez C, Agell N et al (1998) Ubiquitin and proteasome gene expression is increased in skeletal muscle of slim AIDS patients. IntJ Mol Med 2:69–73Google Scholar
  18. 18.
    Garcia-Martinez C, Llovera M, Agell N et al (1995) Ubiquitin gene expression in skeletal muscle is increased during sepsis: involvement of TNF-alpha but not IL-1. Biochem Biophys Res Commun 217:839–944PubMedCrossRefGoogle Scholar
  19. 19.
    Williams A, Sun X, Fischer JE, Hasseigren PO (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–749PubMedGoogle Scholar
  20. 20.
    Bailey JL, Wang X, England BK et al (1996) The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest 97:1447–1453PubMedCrossRefGoogle Scholar
  21. 21.
    Zamir O, Hasseigren PO, Kunkel SL et al (1992) Evidence that tumor necrosis factor participates in the regulation of muscle proteolysis during sepsis. ArchSurg 127:170–174Google Scholar
  22. 22.
    Zamir O, Hasselgren PO, von Allmen D, Fischer JE (1993) In vivo administration of interleukin-1 alpha induces muscle proteolysis in normal and adrenalectomized rats. Metabolism 42:204–208PubMedCrossRefGoogle Scholar
  23. 23.
    Goodman MN (1994) Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 205:182–185PubMedGoogle Scholar
  24. 24.
    Hall-Angeras M, Angeras U, Zamir O et al (1990) Interaction between corticosterone and tumor necrosis factor stimulated protein breakdown in rat skeletal muscle, similar to sepsis. Surgery 108:460–466PubMedGoogle Scholar
  25. 25.
    Hasselgren PO, Wray C, Mammen J (2002) Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 290:1–10PubMedCrossRefGoogle Scholar
  26. 26.
    Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403PubMedCrossRefGoogle Scholar
  27. 27.
    Hasselgren PO, Fischer JE (2001) Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233:9–17PubMedCrossRefGoogle Scholar
  28. 28.
    Fenteany G, Standaert RF, Lane WS et al (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731PubMedCrossRefGoogle Scholar
  29. 29.
    Glas R, Bogyo M, McMaster JS et al (1998) A proteolytic system that compensates for loss of proteasome function. Nature 392:618–622PubMedCrossRefGoogle Scholar
  30. 30.
    Aghajanian C, Soignet S, Dizon DS et al (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8:2505–2511PubMedGoogle Scholar
  31. 31.
    Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427PubMedCrossRefGoogle Scholar
  32. 32.
    Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedCrossRefGoogle Scholar
  33. 33.
    Ghosh S, May MJ, Kopp EB (1998) NF-kB and Rel proteins: evolutionary conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
  34. 34.
    Adcock IM, Caramori G (2001) Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol 79:376–384PubMedCrossRefGoogle Scholar
  35. 35.
    Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716PubMedCrossRefGoogle Scholar
  36. 36.
    Baeuerle PA, Baltimore D (1988) I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546PubMedCrossRefGoogle Scholar
  37. 37.
    Loewe R, Holnthoner W, Groger M et al (2002) Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol 168:4781–4787PubMedGoogle Scholar
  38. 38.
    Langen RC, Schols AM, Kelders MC et al (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEBJ 15:1169–1180CrossRefGoogle Scholar
  39. 39.
    Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Thl clones. J Exp Med 170:2081–2095PubMedCrossRefGoogle Scholar
  40. 40.
    de Vries JE (1995) Immunosuppressive and antiinflammatory properties of interleukin 10. Ann Med 27:537–541PubMedGoogle Scholar
  41. 41.
    Riley JK, Takeda K, Akira S, Schreiber RD (1999) Interleukin-10 receptor signaling through the JAKSTAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J Biol Chem 274:16513–16521PubMedCrossRefGoogle Scholar
  42. 42.
    Koj A (1998) Termination of acute-phase response: role of some cytokines and anti-inflammatory drugs. Gen Pharmac 31:9–18Google Scholar
  43. 43.
    Asadullah K, Docke WD, Sabat RV et al (2000) The treatment of psoriasis with IL-10: rationale and review of the first clinical trials. Expert Opin Investig Drugs 9:95–102PubMedCrossRefGoogle Scholar
  44. 44.
    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765PubMedCrossRefGoogle Scholar
  45. 45.
    Pestka S, Krause CD, Sarkar D, Walter MR et al (2004) Interleukin-10 and Related Cytokines and Receptors. Annu Rev Immunol 22:929–979PubMedCrossRefGoogle Scholar
  46. 46.
    Massague J (1998) TGF-b signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  47. 47.
    Karres I, Kremer JP, Steckholzer U et al (1996) Transforming growth factor-beta 1 inhibits synthesis of cytokines in endotoxin-stimulated human whole blood. Arch Surg 131:1310–1316PubMedGoogle Scholar
  48. 48.
    Chuncharunee S, Carter CD, Studtmann KE et al (1993) Chronic administration of transforming growth factor-beta suppresses erythropoietindependent erythropoiesis and induces tumour necrosis factor in vivo. Br J Haematol 84:374–380PubMedGoogle Scholar
  49. 49.
    Zugmaier G, Paik S, Wilding G et al (1991) Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 51:3590–3594PubMedGoogle Scholar
  50. 50.
    Brunet LR, Finkelman FD, Cheever AW et al (1997) IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis. J Immunol 159:777–785PubMedGoogle Scholar
  51. 51.
    De Bosscher K, Vanden Berghe W, Haegeman G (2000) Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol 109:16–22PubMedCrossRefGoogle Scholar
  52. 52.
    Argiles JM, Meijsing SH, Pallares-Trujillo J et al (2001) Cancer cachexia: a therapeutic approach. Med Res Rev 21:83–101PubMedCrossRefGoogle Scholar
  53. 53.
    Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52:72–91PubMedGoogle Scholar
  54. 54.
    Mantovani G, Macciò A, Massa E, Madeddu C (2001) Managing cancer-related anorexia/cachexia. Drugs 61:499–514PubMedCrossRefGoogle Scholar
  55. 55.
    Auphan N, DiDonato JA, Rosette C et al (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270:286–290PubMedCrossRefGoogle Scholar
  56. 56.
    Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr (1995) Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270:283–286PubMedCrossRefGoogle Scholar
  57. 57.
    McEwan IJ, Wright AP, Gustafsson JA (1997) Mechanism of gene expression by the glucocorticoid receptor: role of protein-protein interactions. Bioessays 19:153–160PubMedCrossRefGoogle Scholar
  58. 58.
    Scheinman RI, Gualberto A, Jewell CM et al (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 15:943–953PubMedGoogle Scholar
  59. 59.
    Armstrong VW, Oellerich M (2001) New developments in the immunosuppressive drug monitoring of cyclosporine, tacrolimus, and azathioprine. Clin Biochem 34:9–16PubMedCrossRefGoogle Scholar
  60. 60.
    Buurman WA, Ruers TJ, Daemen IA et al (1986) Cyclosporin A inhibits IL 2-driven proliferation of human alloactivated T cells. J Immunol 136:4035–4039PubMedGoogle Scholar
  61. 61.
    Matsuda S, Koyasu S (2000) Mechanisms of action of cyclosporine. Immunopharmacology 47:119–125PubMedCrossRefGoogle Scholar
  62. 62.
    Meyer S, Kohler NG, Joly A (1997) Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS Lett 413:354–358PubMedCrossRefGoogle Scholar
  63. 63.
    Holschermann H, Durfeld F, Maus U et al (1996) Cyclosporine a inhibits tissue factor expression in monocytes/macrophages. Blood 88:3837–3845PubMedGoogle Scholar
  64. 64.
    Dawson J, Hurtenbach U, MacKenzie A (1996) Cyclosporin A inhibits the in vivo production of interleukinlb and tumour necrosis factor a, but not interleukin-6, by a T-cell-independent mechanism. Cytokine 8:882–888PubMedCrossRefGoogle Scholar
  65. 65.
    Garcia JE, de Cabo MR, Rodriguez FM et al (2000) Effect of cyclosporin A on inflammatory cytokine production by U937 monocyte-like cells. Mediators Inflamm 9:169–174PubMedCrossRefGoogle Scholar
  66. 66.
    Losa Garcia JE, Mateos Rodriguez F et al (1998) Effect of cyclosporin A on inflammatory cytokine production by human alveolar macrophages. Respir Med 92:722–728PubMedCrossRefGoogle Scholar
  67. 67.
    Rofe AM, Whitehouse MW, Bourgeois CS et al (1990) Prevention of adjuvant-induced cachexia in rats by cyclosporin A. Immunol Cell Biol 68:63–69PubMedCrossRefGoogle Scholar
  68. 68.
    Dumont FJ (2000) FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem 7:731–748PubMedGoogle Scholar
  69. 69.
    Yard BA, Pancham RR, Paape ME et al (1993) CsA, FK506, corticosteroids and rapamycin inhibit TNFalpha production by cultured PTEC. Kidney Int 44:352–358PubMedCrossRefGoogle Scholar
  70. 70.
    Napoli KL, Taylor PJ (2001) From beach to bedside: history of the development of sirolimus. Ther Drug Monit 23:559–586PubMedCrossRefGoogle Scholar
  71. 71.
    Kay JE, Kromwel L, Doe SE, Denyer M (1991) Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology 72:544–549PubMedGoogle Scholar
  72. 72.
    Jorgensen PF, Wang JE, Almlof M et al (2001) Sirolimus interferes with the innate response to bacterial products in human whole blood by attenuation of IL-10 production. Scand J Immunol 53:184–191PubMedCrossRefGoogle Scholar
  73. 73.
    Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164PubMedCrossRefGoogle Scholar
  74. 74.
    Roberts WC (1997) The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am J Cardiol 82:106–107CrossRefGoogle Scholar
  75. 75.
    Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo) 29:1346–1348Google Scholar
  76. 76.
    Rosenson RS (2004) Current overview of statininduced myopathy. Am J Med 116:408–416PubMedCrossRefGoogle Scholar
  77. 77.
    Jacobs D, Blackburn H, Higgins M et al (1992) Report of the Conference on Low Blood Cholesterol: Mortality Associations. Circulation 86:1046–1060PubMedGoogle Scholar
  78. 78.
    Newman TB, Hulley SB (1996) Carcinogenicity of lipid-lowering drugs. JAMA 275:55–60PubMedCrossRefGoogle Scholar
  79. 79.
    Bjerre LM, LeLorier J (2001) Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am J Med 110:716–723PubMedCrossRefGoogle Scholar
  80. 80.
    Strandberg TE, Pyorala K, Cook TJ et al (2004) for the 4S Group. Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S). Lancet 364:771–777PubMedCrossRefGoogle Scholar
  81. 81.
    Liao JK (2002) Isoprenoids as mediators of the biological effects of statins. J Clin Invest 110:285–288PubMedCrossRefGoogle Scholar
  82. 82.
    Ridker PM, Rifai N, Clearfield M et al (2001) Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 344:1959–1965PubMedCrossRefGoogle Scholar
  83. 83.
    Albert MA, Danielson E, Rifai N, Ridker PM (2001) PRINCE Investigators. Effect of statin therapy on Creactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 286:64–70PubMedCrossRefGoogle Scholar
  84. 84.
    Ridker PM, Cannon CP, Morrow D et al (2005) on behalf of the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. Creactive protein levels and outcomes after statin therapy. N Engl J Med 352:20–28PubMedCrossRefGoogle Scholar
  85. 85.
    Rosenson RS, Tangney CC, Casey LC (1999) Inhibition of proinflammatory cytokine production by pravastatin. Lancet 353:983–984PubMedCrossRefGoogle Scholar
  86. 86.
    Chan DC, Watts GF, Barrett PH et al (2002) Effect of atorvastatin and fish oil on plasma high-sensitivity C-reactive protein concentrations in individuals with visceral obesity. Clin Chem 48:877–883PubMedGoogle Scholar
  87. 87.
    Koh KK, Son JW, Ahn JY et al (2003) Comparative effects of diet and simvastatin on markers of thrombogenicity in patients with coronary artery disease. Am J Cardiol 91:1231–1234PubMedCrossRefGoogle Scholar
  88. 88.
    Waehre T, Damas JK, Gullestad L et al (2003) Hydroxymethylglutaryl coenzyme a reductase inhibitors down-regulate chemokines and chemokine receptors in patients with coronary artery disease. J Am Coll Cardiol 41:1460–1467PubMedCrossRefGoogle Scholar
  89. 89.
    Kinlay S, Schwartz GG, Olsson AG et al; Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering Study Investigators (2003) High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation 108:1560–1566Google Scholar
  90. 90.
    Node K, Fujita M, Kitakaze M et al (2003) Shortterm statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 108:839–843PubMedCrossRefGoogle Scholar
  91. 91.
    Holm T, Andreassen AK, Ueland T et al (2001) Effect of pravastatin on plasma markers of inflammation and peripheral endothelial function in male heart transplant recipients. Am J Cardiol 87:815–818PubMedCrossRefGoogle Scholar
  92. 92.
    Indolfi C, Cioppa A, Stabile E et al (2000) Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury. J Am Coll Cardiol 35:214–221PubMedCrossRefGoogle Scholar
  93. 93.
    Bustos C, Hernandez-Presa MA, Ortego M et al (1998) HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol 32:2057–2064PubMedCrossRefGoogle Scholar
  94. 94.
    Walter DH, Schachinger V, Eisner M, Mach S et al (2000) Effect of statin therapy on restenosis after coronary stent implantation. Am J Cardiol 85:962–968PubMedCrossRefGoogle Scholar
  95. 95.
    Corsini A, Pazzucconi F, Pfister P et al (1996) Inhibitor of proliferation of arterial smooth-muscle cells by fluvastatin. Lancet 348:1584PubMedCrossRefGoogle Scholar
  96. 96.
    Kureishi Y, Luo Z, Shiojima I et al (2000) The HMGCoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010PubMedCrossRefGoogle Scholar
  97. 97.
    Carmeliet P, Lampugnani MG, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157PubMedCrossRefGoogle Scholar
  98. 98.
    Fujio Y, Nguyen T, Wencker D et al (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667PubMedGoogle Scholar
  99. 99.
    Fulton D, Gratton JP, McCabe TJ et al (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601PubMedCrossRefGoogle Scholar
  100. 100.
    Dimmeler S, Fleming I, Fisslthaler B et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605PubMedCrossRefGoogle Scholar
  101. 101.
    Llevadot J, Murasawa S, Kureishi Y et al (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 108:399–405PubMedCrossRefGoogle Scholar
  102. 102.
    Vasa M, Fichtischerer S, Adler K et al (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103:2885–2890PubMedCrossRefGoogle Scholar
  103. 103.
    Walter DH, Rittig K, Bahlmann FH et al (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024PubMedCrossRefGoogle Scholar
  104. 104.
    Kumar B, Andreatta C, Koustas WT et al (2002) Mevastatin induces degeneration and decreases viability of cAMP-induced differentiated neuroblastoma cells in culture by inhibiting proteasome activity, and mevalonic acid lactone prevents these effects. J Neurosci Res 68:627–635PubMedCrossRefGoogle Scholar
  105. 105.
    Russo G, Leopold JA, Loscalzo J (2002) Vasoactive substances: nitric oxide and endothelial dysfunction in atherosclerosis. Vascul Pharmacol 38:259–269PubMedCrossRefGoogle Scholar
  106. 106.
    von Haehling S, Anker SD, Bassenge E (2003) Statins and the role of nitric oxide in chronic heart failure. Heart Fail Rev 8:99–106CrossRefGoogle Scholar
  107. 107.
    Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430PubMedCrossRefGoogle Scholar
  108. 108.
    Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11:471–477PubMedCrossRefGoogle Scholar
  109. 109.
    Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. Exp Cell Res 261:44–51PubMedCrossRefGoogle Scholar
  110. 110.
    Strey A, Janning A, Barth H, Gerke V (2002) Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Lett 517:261–266PubMedCrossRefGoogle Scholar
  111. 111.
    Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154:147–160PubMedCrossRefGoogle Scholar
  112. 112.
    Wassmann S, Laufs U, Muller K et al (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305PubMedCrossRefGoogle Scholar
  113. 113.
    Laufs U, Fata VL, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135PubMedGoogle Scholar
  114. 114.
    Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774PubMedCrossRefGoogle Scholar
  115. 115.
    Feron O, Dessy C, Desager JP, Balligand JL (2001) Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 103:113–118PubMedGoogle Scholar
  116. 116.
    Pelat M, Dessy C, Massion P et al (2003) Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E-/mice in vivo. Circulation 107:2480–2486PubMedCrossRefGoogle Scholar
  117. 117.
    Kunz W (1956) N-Phthalyl-glutaminsäure-imid. Arzneimittelforschung 6:426–430PubMedGoogle Scholar
  118. 118.
    Sampaio EP, Kaplan G, Miranda A et al (1993) The influence of thalidomide on the clinical and immunologic manifestation of erythema nodosum leprosum. J Infect Dis 168:408–414PubMedGoogle Scholar
  119. 119.
    Sampaio EP, Sarno EN, Galilly R et al (1991) Thalidomide selectively inhibits tumor necrosis factor a production by stimulated human monocytes. J Exp Med 173:699–703PubMedCrossRefGoogle Scholar
  120. 120.
    Moreira AL, Sampaio EP, Zmuidzinas A et al (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor a by enhancing mRNA degradation. J Exp Med 177:1675–1680PubMedCrossRefGoogle Scholar
  121. 121.
    Davey PP, Ashrafian H (2000) New therapies for heart failure: is thalidomide the answer? QJM 93:305–311PubMedCrossRefGoogle Scholar
  122. 122.
    Bruera E, Neumann CM, Pituskin E et al (1999) Thalidomide in patients with cachexia due to terminal cancer: preliminary report. Ann Oncol 10:857–859PubMedCrossRefGoogle Scholar
  123. 123.
    Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52:72–91PubMedCrossRefGoogle Scholar
  124. 124.
    Tramontana JM, Utaipat U, Molloy A et al (1995) Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1:384–397PubMedGoogle Scholar
  125. 125.
    Muscaritoli M, Costelli P, Bossola M et al (2003) Effects of simvastatin administration in an experimental model of cancer cachexia. Nutrition 19:936–939PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Stephan von Haehling
    • 1
  • Stefan D. Anker
    • 2
  1. 1.Department of Clinical CardiologyNational Heart and Lung Institute, Imperial College School of MedicineLondonUK
  2. 2.Department of Clinical Cardiology, National Heart and Lung Institute, Imperial College School of Medicine, London, United Kingdom and Department of Cardiology, Division of Applied Cachexia ResearchCharité Medical SchoolBerlinGermany

Personalised recommendations