The Current Management of Cancer Cachexia

  • Giovanni Mantovani


The anorexia/cachexia syndrome is one of the most common causes of death among patients with cancer and is present in 80% at death [1]. The term ‘cachexia’ derives from the Greek kakòs, which means ‘bad’, and hexis, meaning ‘condition’. The characteristic clinical picture of anorexia, tissue wasting, loss of body weight accompanied by a decrease in muscle mass and adipose tissue, and poor performance status that often precedes death has been named cancer-related anorexia/cachexia (CAC) [2] [5]. Since the 1980s, the previous concepts explaining CAC were replaced by a more complex insight, which stresses the interaction between metabolically active molecules produced by the tumour itself and the host immune response. One of the main features of the cachectic syndrome is anorexia, which may be so significant that spontaneous nutrition is totally inhibited. The pathogenesis of anorexia is most certainly multifactorial but not yet well understood.


Clin Oncol Body Weight Loss Advanced Pancreatic Cancer Cancer Cachexia North Central Cancer Treatment Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson KA (2000) The cancer anorexia-cachexia syndrome. Semin Oncol 27:64–68PubMedGoogle Scholar
  2. 2.
    Heber D, Byerley LO, Chi J (1986) Pathophysiology of malnutrition in the adult cancer patient. Cancer Res 58:1867–1873Google Scholar
  3. 3.
    Bruera E(1992) Clinical management of anorexia and cachexia in patients with advanced cancer. Oncology 49(Suppl 2):35–42Google Scholar
  4. 4.
    Brennan MR (1997) Uncomplicated starvation vs cancer cachexia. Cancer Res 37:2359–2364Google Scholar
  5. 5.
    Nelson K. Walsh D (1991) Management of the anorexia/ cachexia syndrome. Cancer Bull 43:403–406Google Scholar
  6. 6.
    Tisdale MJ (1997) Cancer cachexia: metabolic alterations and clinical manifestations. Nutrition 13:1–7PubMedCrossRefGoogle Scholar
  7. 7.
    Devereaux DF, Redgrave TG. Tilton M et al (1984) Intolerance to administered lipids in tumor bearing animals. Surgery 100:292–297Google Scholar
  8. 8.
    Vlassara H, Spiegel RJ, Daval DS et al (1986) Reduced plasma lipoprotein lipase activity in patients with malignancy-associated weight loss. Horm Metab Res 18:698–703PubMedGoogle Scholar
  9. 9.
    Rouzer CA, Cerami A (1980) Hypertriglyceridemia associated with Trypanosoma brucei brucei infection in rabbits: role of defective triglycéride removal. Mol Biochem Parasitai 2:31–38CrossRefGoogle Scholar
  10. 10.
    McNamara MJ, Alexander HR, Norton JA (1992) Cytokines and their role in the pathophysiology of cancer cachexia. JPEN J Parenter Enterai Nutr 16(Suppl 6):50S–55SGoogle Scholar
  11. 11.
    Tisdale MJ (1997) Biology of cachexia. J Natl Cancer Inst 89:1763–1773PubMedCrossRefGoogle Scholar
  12. 12.
    Noguchi Y. Yoshikawa T, Matsumoto A et al (1996) Are cytokines possible mediators of cancer cachexia? Surg Today 26:467–475PubMedCrossRefGoogle Scholar
  13. 13.
    Espat NJ, Copeland EM, Moldawer LL (1994) Tumor necrosis factor and cachexia: a current perspective. Surg Oncol 3:255–262PubMedCrossRefGoogle Scholar
  14. 14.
    Moldawer LL, Gelin J, Schersten T et al (1987) Circulating interleukin 1 and tumor necrosis factor during inflammation. Am J Physiol 253:R922–R928PubMedGoogle Scholar
  15. 15.
    Moldawer LL, Andersson C, Gelin J (1988) Regulation of food intake and hepatic protein synthesis by recombinant-derived cytokines. Am J Physiol 254:6450–6456Google Scholar
  16. 16.
    Moldawer LL, Rogy MA, Lowry SF (1992) The role of cytokines in cancer cachexia. JPEN J Parenter Enterai Nutr 16:43S–49SGoogle Scholar
  17. 17.
    Strassmann G, Fong M, Kenney JS et al (1992) Evidence for the involvement of interleukin-6 in experimental cancer cachexia. J Clin Invest 89:1681–1684PubMedGoogle Scholar
  18. 18.
    Busbridge J, Dascombe MJ, Hoopkins S (1989) Acute central effects of interleukin-6 on body temperature, thermogenesis and food intake in the rat. Proc Nutr Soc 38:48AGoogle Scholar
  19. 19.
    Gelin J, Moldawer LL, Lonnroth C (1991) Role of endogenous tumor necrosis factor alfa and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res 51:415–421PubMedGoogle Scholar
  20. 20.
    McLaughlin CL, Rogan GJ, Ton J (1992) Food intake and body temperature responses of rat to recombinant interleukin 1 beta and a tripeptide interleukin 1 beta antagonist. Physiol Behav 52:1155–1160PubMedCrossRefGoogle Scholar
  21. 21.
    Sherry BA, Gelin J, Fong Y(1991) Anticachectin/tumor necrosis factor alpha antibodies attenuate development of cancer cachexia. Cancer Res 51:415–421PubMedGoogle Scholar
  22. 22.
    Matthys P, Billiau A (1997) Cytokines and cachexia. Nutr 13:763–770CrossRefGoogle Scholar
  23. 23.
    Moldawer LL, Copeland EM (1997) Proinflammatory cytokines, nutritional support, and the cachexia syndrome: interactions and therapeutic options. Cancer 79:1828–1839PubMedCrossRefGoogle Scholar
  24. 24.
    Simons JP(1997) Cancer cachexia. Simons JP, MaastrichtGoogle Scholar
  25. 25.
    Beck SA, Mulligan HD, Tisdale MJ (1990) Lipolytic factors associated with murine and human cancer cachexia. J Natl Cancer Inst 82:1922–1926PubMedCrossRefGoogle Scholar
  26. 26.
    Beck SA, Groundwater P, Barton C et al (1990) Alterations in serum lipolytic activity of cancer patients with response to therapy. Br J Cancer 62:822–825PubMedGoogle Scholar
  27. 27.
    Taylor DD, Gercel-Taylor C, Jenis LG et al (1992) Identification of a human tumor-derived lipolysispromoting factor. Cancer Res 52:829–834PubMedGoogle Scholar
  28. 28.
    Todorov PT, Cariuk P, McDevitt TM et al (1996) Characterization of a cancer cachectic factor. Nature 379:739–742PubMedCrossRefGoogle Scholar
  29. 29.
    Byerley LO, Alcock NW, Starnes HF (1992) Sepsis induced cascade of cytokine mRNA expression: correlation with metabolic changes. Am J Physiol 261:E728–E735Google Scholar
  30. 30.
    Waage A, Brandtzaeg P, Halstensen A et al (1989) The complex pattern of cytokines in serum from patients with meningococcal septic shock. J Exp Med 169:333–338PubMedCrossRefGoogle Scholar
  31. 31.
    Wilmore DW, Long JM, Mason AD et al (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 180:653–668PubMedCrossRefGoogle Scholar
  32. 32.
    Stoner HB, Barton RN, Little RA et al (1977) Measuring the severity of injury. BMJ 2:1247–1249PubMedGoogle Scholar
  33. 33.
    Wilmore DW, Moylan JA, Pruitt Bam Lindsey CA et al (1974) Hyperglucagonaemia after burns. Lancet 1:73–75PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenblatt S,Jr Clowes GH, George BC et al (1983) Exchange of amino acids by muscle and liver in sepsis. Arch Surg 118:167–175PubMedGoogle Scholar
  35. 35.
    Long CL (1997) Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 30:1301–1310Google Scholar
  36. 36.
    Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:74–80PubMedCrossRefGoogle Scholar
  37. 37.
    Nordenstrom J, Carpentier YA, Askanazi J et al (1983) Free fatty acid mobilization and oxidation during total parenteral nutrition in trauma and infection. Ann Surg 198:725–735PubMedCrossRefGoogle Scholar
  38. 38.
    Oliff A, Defeo-Jones D, Boyer M et al (1987) Tumor secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–563PubMedCrossRefGoogle Scholar
  39. 39.
    Campfield LA, Smith FJ. Guisez Y et al (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549PubMedCrossRefGoogle Scholar
  40. 40.
    Stephens TW, Basinski M, Bristow PKet al (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377:530–532PubMedCrossRefGoogle Scholar
  41. 41.
    Halaas JL, Gajiwala KS, Maffei Met al (1995) Weight reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz MW, Baskin DG, Bukowski TR et al (1996) Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45:531–535PubMedCrossRefGoogle Scholar
  43. 43.
    Billington CJ, Briggs JE, Grace M, Levine AS (1991) Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 260(2Pt2):R321–R327PubMedGoogle Scholar
  44. 44.
    Dryden S, Frankish H, Wang Q, Williams G (1994) Neuropeptide Y and energy balance: one way ahead for the treatment of obesity? Eur J Clin Invest 24:293–308PubMedGoogle Scholar
  45. 45.
    Inui A (1999) Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res 15:4493–4501Google Scholar
  46. 46.
    Inui A (1999) Neuropeptide Y: a key molecule in anorexia and cachexia in wasting disorders? Mol Med Today 5:79–85PubMedCrossRefGoogle Scholar
  47. 47.
    Mantovani G, Macciò A, Mura L et al (2000) Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J Mol Med 78:554–556PubMedCrossRefGoogle Scholar
  48. 48.
    Gagnon B, Bruera E (1998) A review of the drug treatment of cachexia associated with cancer. Drugs 55:675–688PubMedCrossRefGoogle Scholar
  49. 49.
    Kotler DP (2000) Cachexia. Ann Intern Med 133:622–634PubMedGoogle Scholar
  50. 50.
    Bennegard K, Eden E, Ekman L et al (1983) Metabolic response of whole body and peripheral tissues to enterai nutrition in weight-losing cancer and non cancer patients. Gastroenterology 85:92–99PubMedGoogle Scholar
  51. 51.
    Dresler CM, Jeevanandam M, Brennan MF (1987) Metabolic efficacy of enterai feeding in malnourished cancer and non cancer patients. Metabolism 36:82–88PubMedCrossRefGoogle Scholar
  52. 52.
    Laviano A, Meguid MM (1996) Nutritional issues in cancer management. Nutrition 12:358–371PubMedCrossRefGoogle Scholar
  53. 53.
    Klein S, Kinney J, Jeejeebhoy K et al (1997) Nutrition support in clinical practice: review of published data and recommendations for future research directions. Clin Nutr 16:193–218PubMedCrossRefGoogle Scholar
  54. 54.
    Sikora SS, Ribeiro U, Kane JM3rd et al (1998) Role of nutrition support during induction chemoradiation therapy in esophageal cancer. JPEN J Parenter Enterai Nutr 22:18–21Google Scholar
  55. 55.
    Lipman TO (1991) Clinical trials of nutritional support in cancer: parenteral and enterai therapy. Hematol Oncol Clin North Am 5:91–102PubMedGoogle Scholar
  56. 56.
    Nelson KA, Walsh D, Sheehan FA(1994) The cancer anorexia-cachexia syndrome. J Clin Oncol 12:213–225PubMedGoogle Scholar
  57. 57.
    Body JJ (1999) Metabolic sequelae of cancers (excluding bone marrow transplantation). Curr Opin Clin Nutr Metab Care 2:339–344PubMedCrossRefGoogle Scholar
  58. 58.
    Body JJ (1999) The syndrome of anorexia-cachexia. Curr Opin Oncol 11:255–260PubMedCrossRefGoogle Scholar
  59. 59.
    Nelson KA, Walsh D, Sheehan FA (1994) The cancer anorexia-cachexia syndrome. J Clin Oncol 12:213–225PubMedGoogle Scholar
  60. 60.
    Miller M (1998) Can reducing caloric intake also help reduce cancer? J Natl Cancer Inst 90:1766–1767PubMedCrossRefGoogle Scholar
  61. 61.
    Nitenberg G, Raynard B (2000) Nutritional support of the cancer patient: issues and dilemmas. Crit Rev Oncol Hematol 34:137–168PubMedCrossRefGoogle Scholar
  62. 62.
    Laviano A, Meguid MM, Yang ZJ et al (1996) Cracking the riddle of cancer anorexia. Nutrition 12:706–710PubMedGoogle Scholar
  63. 63.
    Kardinal CG, Loprinzi CL, Schaid DJ et al (1990) A controlled trial of cyproheptadine in cancer patients with anorexia and/or cachexia. Cancer 65:2657–2662PubMedCrossRefGoogle Scholar
  64. 64.
    Ray PD, Hanson RL, Lardy HA (1970) Inhibition by hydrazine of gluconeogenesis in the rat. J Biol Chem 245:690–696PubMedGoogle Scholar
  65. 65.
    Kosty MP, Fleishman SB, Herndon JE et al (1994) Cisplatin, vinblastine and hydrazine sulfate in advanced, non-small-cell lung cancer: a randomized placebo controlled, double-blind phase III study of the cancer and leukemia group B. J Clin Oncol 12:1113–1120PubMedGoogle Scholar
  66. 66.
    Loprinzi CL, Kuross AS, O’Fallon JR et al (1994) Randomized placebo-controlled evaluation of hydrazine sulfate in patients with advanced colorectal cancer. J Clin Oncol 12:1121–1125PubMedGoogle Scholar
  67. 67.
    Loprinzi CL, Goldberg RM, Su JQ et al (1994) Placebo controlled trial of hydrazine sulfate in patients with newly diagnosed non-small-cell lung cancer. J Clin Oncol 12:1126–1129PubMedGoogle Scholar
  68. 68.
    Gralla RJ, Itri LM, Prisko SE et al (1981) Antiemetic efficacy of high-dose metoclopramide: randomized trials with placebo and prochlorperazine in patients with chemotherapy-induced nausea and vomiting. N Engl J Med 305:905–909PubMedCrossRefGoogle Scholar
  69. 69.
    Grosvenor M, Bulcavage L, Chlebowski RT (1989) Symptoms potentially influencing weight loss in a cancer population. Cancer 63:330–334PubMedCrossRefGoogle Scholar
  70. 70.
    Shivshanker K, Bennett RW, Hayne TP (1983) Tumor associated gastroparesis: correction with metoclopramide. Am J Surg 145:221–225PubMedCrossRefGoogle Scholar
  71. 71.
    Nelson KA, Walsh TD, Sheehan FG et al (1993) Assessment of upper gastrointestinal motility in the cancer associated dyspepsia syndrome. J Palliat Care 9:27–31PubMedGoogle Scholar
  72. 72.
    Bruera E, MacBachern T, Spachynski K et al (1994) Comparison of the efficacy, safety and pharmacokinetics of controlled release and immediate release metoclopramide for the management of chronic nausea in patients with advanced cancer. Cancer 74:3204–3211PubMedCrossRefGoogle Scholar
  73. 73.
    Foltin RW, Fishman MW, Byrne MF(1988) Effects of smoked marijuana on food intake and body weight of humans living in a residential laboratory. Appetite 11:1–14PubMedCrossRefGoogle Scholar
  74. 74.
    Jatoi A, Windschitl HE, Loprinzi CL, et al (2002) Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group study. Support Care Cancer 10:71–75PubMedCrossRefGoogle Scholar
  75. 75.
    Wadleigh R, Spaulding M, Lembersky B et al (1990) Dronabinol enhancement of appetite and cancer patients. Proc Am Soc Clin Oncol 9:331 (abs)Google Scholar
  76. 76.
    Nelson K, Walsh D, Deeter Pet al (1994) A phase II study of deltanine-tetrahydrocannabinol for appetite stimulation in cancer-associated anorexia. J Palliat Care 10:14–18PubMedGoogle Scholar
  77. 77.
    Beal JE, Olson R, Laubenstein L et al (1995) Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage 10:89–97PubMedCrossRefGoogle Scholar
  78. 78.
    Cavalli G, Goldhirsch A, Jungi F et al (1984) Randomized trial of low-versus-high-dose medroxyprogesterone acetate in the treatment of postmenopausal patients with advanced breast cancer. In: Pellegrini A, Robustelli Delia Cuna G (eds) Role of medroxyprogesterone in endocrine-related tumors, vol 3. Raven Press, New York, pp 79–89Google Scholar
  79. 79.
    Tchekmedyian NS, Tait N, Moody M et al (1987) Highdose megestrol acetate: a possible treatment for cachexia. JAMA 257:1195–1198PubMedCrossRefGoogle Scholar
  80. 80.
    McCarthy HD, Crowder RE, Dryden S et al (1994) Megestrol acetate stimulates food and water intake in the rat: effects on regional hypothalamic neuropeptide Y concentrations. Eur J Pharmacol 265:99–102PubMedCrossRefGoogle Scholar
  81. 81.
    Mantovani G, Macciò A, Bianchi A et al (1995) Megestrol acetate in neoplastic anorexia/cachexia: clinical evaluation and comparison with cytokine levels in patients with head and neck carcinoma treated with neoadjuvant chemotherapy. Int J Clin Lab Res 25:135–141PubMedCrossRefGoogle Scholar
  82. 82.
    Mantovani G, Macciò A, Esu S et al (1997) Medroxyprogesterone acetate reduces the in vitro production of cytokines and serotonin involved in anorexia/cachexia and emesis by peripheral blood mononuclear cells of cancer patients. Eur J Cancer 33:602–607PubMedCrossRefGoogle Scholar
  83. 83.
    Mantovani G, Macciò A, Lai P et al (1988) Cytokine activity in cancer-related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate. Semin Oncol 25(2 Suppl 6):45–52Google Scholar
  84. 84.
    Bruera E, MacMillan K, Hanson J et al (1990) A controlled trial of megestrol acetate on appetite, caloric intake, nutritional status and other symptoms in patients with advanced cancer. Cancer 66:1279–1282PubMedCrossRefGoogle Scholar
  85. 85.
    Loprinzi CL, Ellison NM, Shaid DJ et al (1990) Controlled trial of megestrol acetate for the treatment of cancer, anorexia and cachexia. J Natl Cancer Inst 82:1127–1132PubMedCrossRefGoogle Scholar
  86. 86.
    Tchekmedyian NS, Hakman M, Siau J et al (1992) Megestrol acetate in cancer anorexia and weight loss. Cancer 69:1268–1274PubMedCrossRefGoogle Scholar
  87. 87.
    Feliu J, Gonzalez-Baron M, Berrocal A (1992) Usefulness of megestrol acetate in cancer cachexia and anorexia. Am J Clin Oncol 15:436–460PubMedCrossRefGoogle Scholar
  88. 88.
    Beller E, Tattersall M, Kumley T et al (1997) Improved quality of life with megestrol acetate in patients with endocrine-insensitive advanced cancer: a randomised placebo-controlled trial. Ann Oncol 8:277–283PubMedCrossRefGoogle Scholar
  89. 89.
    Schmoll E, Wilke H, Thole R (1991) Megestrol acetate in cancer cachexia. Semin Oncol 1(Suppl 2):32–34Google Scholar
  90. 90.
    Fietkau R, Riepi M, Kettner H(1997) Supportive use of megestrol acetate in patients with head and neck cancer during radio(chemo)therapy. Eur J Cancer 33:75–79PubMedCrossRefGoogle Scholar
  91. 91.
    Loprinzi CL, Michalak JC, Shaid DJ (1993) Phase three evaluation of four doses of megestrol acetate as therapy for patients with cancer anorexia and/or cachexia. J Clin Oncol 11:762–767PubMedGoogle Scholar
  92. 92.
    Bruera E, Ernst S, Hagen N et al (1996) Symptomatic effects of megestrol acetate (MA): a double-blind, crossover study. Proc Am Soc Clin Oncol 15:31 (abs)Google Scholar
  93. 93.
    McMillan DC, Simpson JM, Preston T et al (1994) Effect of megestrol acetate on weight loss, body composition and blood screen of gastrointestinal cancer patients. Clin Nutr 85–89Google Scholar
  94. 94.
    Gebbia V, Testa A, Gebbia N (1996) Prospective randomised trial of two levels of megestrol acetate in the management of anorexia-cachexia syndrome in patients with metastatic cancer. Br J Cancer 73:1576–1580PubMedGoogle Scholar
  95. 95.
    Downer S, Joel S, Allbright A et al (1993) A double blind placebo controlled trial of medroxyprogesterone acetate (MPA) in cancer cachexia. Br J Cancer 67:1102–1105PubMedGoogle Scholar
  96. 96.
    Simons JP, Aaronson NK, Vansteenkiste JF et al (1996) Effect of medroxyprogesterone acetate on appetite, weight, and quality of life in advancedstage non-hormone-sensitive cancer: a placebo-controlled multicenter study. J Clin Oncol 14:1077–1084PubMedGoogle Scholar
  97. 97.
    Ottery FD, Walsh D, Strawford A (1998) Pharmacologic management of anorexia/cachexia. Semin Oncol 25(Suppl 6):35–44PubMedGoogle Scholar
  98. 98.
    De VitaJr VT, Hellman S, Rosenberg SA(1997) Cancer principles and practice of oncology.Vol 1, 5th ed. Lippincott-Raven, PhiladelphiaGoogle Scholar
  99. 99.
    Bruera E, Fainsinger RL (1993) Clinical management of cachexia and anorexia. In: Doyle D, Hanks G, MacDonald N (eds) Oxford textbook of palliative medicine. Oxford Medical Publications, London, pp 330–337Google Scholar
  100. 100.
    Steer KA, Kurtz AB, Honour JW (1995) Megestrolinduced Cushing’s syndrome. Clin Endocrinol 42:91–93Google Scholar
  101. 101.
    Heckmayr M, Gatzeneier U (1992) Treatment of cancer weight loss in patients with advanced lung cancer. Oncology 49(Suppl 2):32–34PubMedCrossRefGoogle Scholar
  102. 102.
    Femia RA, Goyette RE (2005) The science of megestrol acetate delivery: potential to improve outcomes in cachexia. Bio Drugs 19:179–187Google Scholar
  103. 103.
    Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG (1974) Corticosteroid therapy of preterminal gastrointestinal cancer. Cancer 33:1607–1609PubMedCrossRefGoogle Scholar
  104. 104.
    Willox JC, Corr J, Shaw J et al (1984) Prednisolone as an appetite stimulant in patients with cancer. Br Med J (Clin Res Ed) 288:27Google Scholar
  105. 105.
    Bruera E, Roca E, Cedaro L et al (1985) Action of oral methylprednisolone in terminal cancer patients: a prospective randomized double-blind study. Cancer Treat Rep 69:751–754PubMedGoogle Scholar
  106. 106.
    Delia Cuna GR, Pellegrini A, Piazzi M (1989) Effect of methylprednisolone sodium succinate on quality of life in preterminal cancer patients: a placebo-controlled, multicenter study. The Methylprednisolone Preterminal Cancer Study Group. Eur J Cancer Clin Oncol 25:1817–1821CrossRefGoogle Scholar
  107. 107.
    Popiela T, Lucchi R, Giongo F (1989) Methylprednisolone as palliative therapy for female terminal cancer patients. The Methylprednisolone Female Preterminal Cancer Study Group. Eur J Cancer Clin Oncol 25:1823–1829PubMedCrossRefGoogle Scholar
  108. 108.
    Bruera ED, Roca E, Cedaro L et al (1983) Improved control of chemotherapy-induced emesis by the addition of dexamethasone to metoclopramide in patients resistant to metoclopramide. Cancer Treat Rep 67:381–383PubMedGoogle Scholar
  109. 109.
    Watanabe S, Bruera E (1994) Corticosteroids as adjuvant analgesics. J Pain Symptom Manage 9:442–445PubMedCrossRefGoogle Scholar
  110. 110.
    Fuinsinger R (1996) Pharmacological approach to cancer cachexia and cachexia. In: Bruera E, Higginson I (eds) Cachexia-anorexia in cancer patients. Oxford University Press, Oxford, pp 128–140Google Scholar
  111. 111.
    Plata-Salaman CR (1991) Dexamethasone inhibits food intake suppression induced by low doses of interleukin-1 beta administered intracerebroventricularly. Brain Res Bull 27:737–738PubMedCrossRefGoogle Scholar
  112. 112.
    Uehara A, Sekiya C, Takasugi Y et al (1989) Anorexia induced by interleukin 1: involvement of corticotropinreleasing factor. Am J Physiol 257(3 Pt 2):R613–R617PubMedGoogle Scholar
  113. 113.
    Han J, Thompson P, Beutler B (1990) Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med 172:391–394PubMedCrossRefGoogle Scholar
  114. 114.
    Trikha M, Corringham R, Klein B, Rossi JF. (2003) Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9:4653–4665PubMedGoogle Scholar
  115. 115.
    Siegel SA, Shealy DJ, Nakada MT et al (1995) The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo. Cytokine 7:15–25PubMedCrossRefGoogle Scholar
  116. 116.
    Torelli GF, Meguid MM, Moldawer LL et al (1999) Use of recombinant human soluble TNF receptor in anorectic tumor-bearing rats. Am J Physiol 277:R850–R855PubMedGoogle Scholar
  117. 117.
    Zabel P, Wolter DT, Schonharting MM, Schade UF (1989) Oxpentifylline in endotoxaemia. Lancet 2:1474–1477PubMedCrossRefGoogle Scholar
  118. 118.
    Lissoni P, Ardizzoia A, Perego MS et al (1993) Inhibition of tumor necrosis factor-alpha secretion by pentoxifylline in advanced cancer patients with abnormally high blood levels of tumor necrosis factor-alpha. J Biol Regul Homeost Agents 7:73–75PubMedGoogle Scholar
  119. 119.
    Goldberg RM, Loprinzi CL, Mailliard JA et al (1995) Pentoxifylline for treatment of cancer anorexia and cachexia? A randomized, double-blind, placebo-controlled trial. J Clin Oncol 13:2856–2859PubMedGoogle Scholar
  120. 120.
    Gordon JN, Trebble TM, Ellis RD et al (2005) Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54:540–545PubMedCrossRefGoogle Scholar
  121. 121.
    Wigmore SJ, Falconer JS, Plester CE et al (1995) Ibuprofen reduces energy expenditure and acutephase protein production compared with placebo in pancreatic cancer patients. Br J Cancer 72:185–188PubMedGoogle Scholar
  122. 122.
    McMillan DC, O’Gorman P, Fearon KC, McArdle CS (1997) A pilot study of megestrol acetate and ibuprofen in the treatment of cachexia in gastrointestinal cancer patients. Br J Cancer 76:788–790PubMedGoogle Scholar
  123. 123.
    Lundholm K, Gelin J, Hyltander A et al (1994) Antiinflammatory treatment may prolong survival in undernourished patients with metastatic solid tumors. Cancer Res 54:5602–5606PubMedGoogle Scholar
  124. 124.
    Masferrer JL, Leahy KM, Koki AT et al (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306–1311PubMedGoogle Scholar
  125. 125.
    Moore RJ, Zweifel B, Heuvelman DM et al (2000) Enhanced antitumor activity by co-administration of celecoxib and chemotherapeutic agents cyclophosphamide and 5-FU. Proc Am Assoc Cancer Res 41:409Google Scholar
  126. 126.
    Kishi K, Petersen S, Petersen C et al (2000) Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 60:1326–1331PubMedGoogle Scholar
  127. 127.
    Reddy BS, Hirose Y, Lubet R et al (2000) Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib,administered during different stages of carcinogenesis. Cancer Res 60:293–297PubMedGoogle Scholar
  128. 128.
    Dicker AP (2003) COX-2 inhibitors and cancer therapeutics: potential roles for inhibitors of COX-2 in combination with cytotoxic therapy: reports from a symposium held in conjunction with the Radiation Therapy Oncology Group, June 2001 Meeting. Am J Clin Oncol 26:S46–S47PubMedGoogle Scholar
  129. 129.
    Lissoni P, Paolorossi F, Tancini G et al (1996) Is there a role for melatonin in the treatment of neoplastic cachexia? Eur J Cancer 32A:1340–1343PubMedCrossRefGoogle Scholar
  130. 130.
    Lissoni P, Barni S, Tancini G et al (1994) Role of the pineal gland in the control of macrophage functions and its possible implication in cancer: a study of interactions between tumor necrosis factor-alpha and the pineal hormone melatonin. J Biol Regul Homeost Agents 8:126–129PubMedGoogle Scholar
  131. 131.
    Meydani SN, Lichtenstein AH, Cornwall S et al (1993) Immunologic effects of national cholesterol education panel step-2 diets with and without fishderived N-3 fatty acid enrichment. J Clin Invest 92:105–113PubMedCrossRefGoogle Scholar
  132. 132.
    Wigmore SJ, Fearon KC, Ross JA (1997) Modulation of human hepatocyte acute phase protein production in vitro by n-3 and n-6 polyunsaturated fatty acids. Ann Surg 225:103–111PubMedCrossRefGoogle Scholar
  133. 133.
    Barber MD, Ross JA, Preston T et al (1999) Fish oilenriched nutritional supplement attenuates progression of the acute-phase response in weight-losing patients with advanced pancreatic cancer. J Nutr 129:1120–1125PubMedGoogle Scholar
  134. 134.
    Tisdale MJ (1996) Inhibition of lipolysis and muscle protein degradation by EPA in cancer cachexia. Nutrition 12:S31–S33PubMedGoogle Scholar
  135. 135.
    Purasiri P, Murray A, Richardson S et al (1994) Modulation of cytokine production in vivo by dietary essential fatty acids in patients with colorectal cancer. Clin Sci (Lond) 87:711–717Google Scholar
  136. 136.
    Wigmore SJ, Ross JA, Falconer JS et al (1996) The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer. Nutrition 12:S27–S30PubMedGoogle Scholar
  137. 137.
    Wigmore SJ, Fearon KC, Maingay JP, Ross JA (1997) Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 92:215–221Google Scholar
  138. 138.
    Falconer JS, Ross JA, Fearon KC et al (1994) Effect of eicosapentaenoic acid and other fatty acids on the growth in vitro of human pancreatic cancer cell lines. Br J Cancer 69:826–832PubMedGoogle Scholar
  139. 139.
    de Bravo MG, de Antueno RJ, Toledo J et al (1991) Effects of an eicosapentaenoic and docosahexaenoic acid concentrate on a human lung carcinoma grown in nude mice. Lipids 26:866–870PubMedCrossRefGoogle Scholar
  140. 140.
    Beck SA, Smith KL, Tisdale MJ (1991) Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res 51:6089–6093PubMedGoogle Scholar
  141. 141.
    Barber MD, Wigmore SJ, Ross JA et al (1997) Eicosapentaenoic acid attenuates cachexia associated with advanced pancreatic cancer. Prostaglandin Leukot Essent Fatty Acids 57:204Google Scholar
  142. 142.
    Fearon KC, Von Meyenfeldt MF, Moses AG et al (2003) Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52:1479–1486PubMedCrossRefGoogle Scholar
  143. 143.
    Jatoi A, Rowland K, Loprinzi CL et al; North Central Cancer Treatment Group (2004) An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol 22:2469–2476Google Scholar
  144. 144.
    Carbo N, Lopez-Soriano J, Tarrago T et al (1997) Comparative effects of beta2-adrenergic agonists on muscle waste associated with tumor growth. Cancer Lett 115:113–118PubMedCrossRefGoogle Scholar
  145. 145.
    Ziegler TR, Wilmore DW (1993) Anabolic effects of growth hormone administration in adults. In: Muller EE, Cocchi D, Locatelli V (eds) Growth hormone and somatomedins during lifespan. Springer Verlag, Berlin, pp 312–328Google Scholar
  146. 146.
    Froesch ER, Schmid C, Schwander J et al (1985) Actions of insulin-like growth factors. Ann Rev Physiol 47:443–467CrossRefGoogle Scholar
  147. 147.
    Tayek JA, Brasel JA (1995) Failure of anabolism in malnourished cancer patients receiving growth hormone: a clinical research center study. J Clin Endocrinol Metab 80:2082–2087PubMedCrossRefGoogle Scholar
  148. 148.
    Ottery FD (1996) Supportive nutritional management of the patient with pancreatic cancer. Oncology 10:26–32PubMedGoogle Scholar
  149. 149.
    Laviano A, Muscaritoli M, Cascino A et al (2005) Branched-chain amino acids: the best compromise to achieve anabolism? Curr Opin Clin Nutr Metab Care 8:408–414PubMedCrossRefGoogle Scholar
  150. 150.
    Nukatsuka M, Fujioka A, Saito H et al (1996) Prolongation of survival period and improvement of cancer cachexia by long-term administration of UFT. Cancer Lett 104:197–203PubMedCrossRefGoogle Scholar
  151. 151.
    Aaronson NK, Ahmedzai S, Bergman B et al (1993) The European Organization for Research and Treatment of Cancer QLQC30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85:365–376PubMedCrossRefGoogle Scholar
  152. 152.
    RowlandJr KM, Loprinzi CL, Shaw EG et al (1996) Randomized double-blind placebo-controlled trial of cisplatin and etoposide plus megestrol acetate/placebo in extensive-stage small cell lung cancer: a north central cancer treatment group study. J Clin Oncol 14:135–141PubMedGoogle Scholar
  153. 153.
    Bruera E, Ernst S, Hagen N et al (1998) Effectiveness of megestrol acetate in patients with advanced cancer: a randomized, double-blind, crossover study. Cancer Prev Control 2:74–78PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Giovanni Mantovani
    • 1
  1. 1.Department of Medical OncologyUniversity of CagliariCagliariItaly

Personalised recommendations