Omega-3 Fatty Acids, Cancer Anorexia, and Hypothalamic Gene Expression

  • Eduardo J. B. Ramos
  • Carolina G. Goncalves
  • Susumu Suzuki
  • Akio Inui
  • Alessandro Laviano
  • Michael M. Meguid


A number of novel pathways and mediators controlling food intake, body weight, and energy expenditure have been identified using molecular and genetic techniques [1, 2]. It is now accepted that body weight is regulated by a feedback loop, in which peripheral signals from the gut, liver, and fat provide nutritional information via hormones and afferent vagal input to integrated centres in the brainstem and the hypothalamus. At these sites, monoaminergic and peptidergic neurons interact to integrate and transduce the incoming signals, thereby modulating food intake [2]. In this type of regulation, orexigenic and anorexigenic neuromediators are in a constant balance to maintain homeostasis. In several clinical diseases, ranging from inflammatory conditions such as obesity to cancer, an imbalance among these neuromediators occurs, leading, respectively, to either hyperphagia, with an increase in food intake, or to anorexia, with a decrease in food intake [3, 4].


Pancreatic Polypeptide Meal Size POMC Neuron Inhibit Food Intake Prostaglandin Leukot Essent Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inui A (1999) Feeding and body-weight regulation by hypothalamic neuropeptidesmediation of the actions of leptin. Trends Neurosci 22:62–67PubMedCrossRefGoogle Scholar
  2. 2.
    Neary NM, Goldstone AP, Bloom SR (2004) Appetite regulation from gut to the hypothalamus. Clin Endocrinol 60:153–160CrossRefGoogle Scholar
  3. 3.
    Ramos EJB, Xu Y, Middleton F et al (2003) Is obesity an inflammatory disease? Surgery 134:329–335PubMedCrossRefGoogle Scholar
  4. 4.
    Inui A, Meguid MM (2003) Cachexia and obesity: two sides of the coin? Curr Opin Clin Nutr Metab Care 6:395–399PubMedCrossRefGoogle Scholar
  5. 5.
    Warren S (1932) The immediate cause of death in cancer. Am J Med Sci 184:610–615CrossRefGoogle Scholar
  6. 6.
    Mantovani G, Macciò A, Massa E, Madeddu C (2001) Managing cancer-related anorexia/cachexia. Drugs 61:499–514PubMedCrossRefGoogle Scholar
  7. 7.
    Turrin NP, Ilyn SE, Gayle D et al (2004) Interleukinlb system in anorectic catabolic tumor bearing rats. Cytokine, neuropeptide and G protein alpha-subunit mRNAs in anorectic MCA tumor bearing rats. Curr Opin Clin Nutri 7:419–426CrossRefGoogle Scholar
  8. 8.
    Langstein HN, Norton JA (1991) Mechanisms of cancer cachexia. Hematol Oncol Clin North Am 5:103–123PubMedGoogle Scholar
  9. 9.
    Plata-Salaman CR(2000) Central nervous system mechanisms contributing to the cachexia-anorexia syndrome. Nutrition 16:1009–1012Google Scholar
  10. 10.
    Meguid MM, Laviano A, Rossi Fanelli F (1998) Food intake equals meal size x meal number. Appetite 31:404PubMedCrossRefGoogle Scholar
  11. 11.
    Sato T, Meguid MM, Fetissov SO et al (2001) Hypothalamic dopaminergic receptor expressions in anorexia of tumor bearing rats. Am J Physiol Regul Integr Comp Physiol 281:R1907–R1916PubMedGoogle Scholar
  12. 12.
    Meguid MM, Laviano A (2001) Malnutrition, outcome and nutritional support: time to re-visit the issues. Ann Thorac Surg 71:766–768PubMedCrossRefGoogle Scholar
  13. 13.
    Laviano A, Meguid MM, Rossi Fanelli F (2003) Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol 4:686–694PubMedCrossRefGoogle Scholar
  14. 14.
    Maltoni M, Pirovano M, Scarpi E et al (1995) Prediction of survival of patients terminally ill with cancer. Results of an Italian prospective multicentric study. Cancer 75:2613–2622PubMedCrossRefGoogle Scholar
  15. 15.
    Ramos EJ, Middleton F, Laviano A et al (2004) Effects of ω-3 fatty acid supplementation on tumor bearing rats. J Am Coll Surg 199:716–723PubMedCrossRefGoogle Scholar
  16. 16.
    Niijima A, Miyata G, Sato T, Meguid MM (2001) Hepato-vagal pathway associated with nicotine’s anorectic effect in the rat. Auton Neurosc 93:48–55CrossRefGoogle Scholar
  17. 17.
    Nandi J, Meguid MM, Inui A et al (2002) Central mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 4: 407–418CrossRefGoogle Scholar
  18. 18.
    Asakawa A, Inui A, Goto K et al (2002) Effects of agouti-related protein, orexin and melanin-concentrating hormone on oxygen consumption in mice. Int J Mol Med 10:523–525PubMedGoogle Scholar
  19. 19.
    Meguid MM, Fetissov SO, Varma M et al (2000) Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16:853–857Google Scholar
  20. 20.
    Meguid MM, Ramos EJ, Laviano A et al (2004) Tumor and anorexia: effects on neuropeptide Y and monoamines in paraventricular nucleus. Peptides 25:261–266PubMedCrossRefGoogle Scholar
  21. 21.
    Niijima A, Meguid MM (1995) Effects of argininelysine mixture, glucose and ATP on the autonomie outflows to the thymus and spleen. Neurobiology 3:299–307PubMedGoogle Scholar
  22. 22.
    Marx J (2003) Cellular warriors at the battle of the bulge. Science 299:846–849PubMedCrossRefGoogle Scholar
  23. 23.
    Costentin J (2004) Physiological and neurobiological elements of food intake. Ann Pharm Fr 62:92–102PubMedGoogle Scholar
  24. 24.
    Inui A, Asakawa A, Bowers CY et al (2004) Ghrelin, appetite, and gastric motility—the emerging role of the stomach as an endocrine organ. FASEB J 18:439–456PubMedCrossRefGoogle Scholar
  25. 25.
    Ueno N, Dube MG, Inui A et al (2004) Leptin modulates orexigenic effects of ghrelin, attenuates adiponectin and insulin levels, and selectively the dark-phase feeding as revealed by central leptin gene therapy. Endocrinology 145:4176–4184PubMedCrossRefGoogle Scholar
  26. 26.
    Asakawa A, Inui A, Yuzuriha H et al (2003) Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124:1325–1336PubMedCrossRefGoogle Scholar
  27. 27.
    Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY (3-36) physiologically inhibits food intake. Nature 418:650–654PubMedCrossRefGoogle Scholar
  28. 28.
    O’Donohue TL, Dorsa DM (1982) The opiomelanotropinergic neuronal and endocrine systems. Peptides 3:353–395CrossRefGoogle Scholar
  29. 29.
    Jacobowitz DM, O’Donohue TL (1978) Alphamelanocyte stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Acad Sci U S A 75:6300–6304PubMedCrossRefGoogle Scholar
  30. 30.
    Meguid MM, Muscaritoli M, Beverly JL et al (1992) The early cancer anorexia paradigm: changes in plasma free tryptophan and feeding indexes. J Parenter Enterai Nutr 16:56S–59SCrossRefGoogle Scholar
  31. 31.
    Meguid MM, Sato T, Torelli GF et al (2000) An analysis of temporal changes in meal number and meal size at onset of anorexia in male tumor-bearing rats. Nutrition 16:305–306PubMedCrossRefGoogle Scholar
  32. 32.
    Meguid MM, Yang ZJ, Laviano A (1997) Meal size and number: relationship to dopamine levels in the ventromedial hypothalamic nucleus. Am J Physiol 272:R1925–R1930PubMedGoogle Scholar
  33. 33.
    Varma M, Torelli GF, Meguid MM et al (1999) Potential strategies for ameliorating early cancer anorexia. J Surg Res 81:69–76PubMedCrossRefGoogle Scholar
  34. 34.
    Robert A, Olafsson AS, Lancaster C, Zhang WR (1991) Interleukin-1 is cytoprotective, antisecretory, stimulates PGE2 synthesis by the stomach, and retards gastric emptying. Life Sci 48:123–134PubMedCrossRefGoogle Scholar
  35. 35.
    Yang ZJ, Koseki M, Meguid MM et al (1994) Synergistic effect of rhTNF-alpha and rhIL-1 alpha in inducing anorexia in rats. Am J Physiol 267:R1056–R1064PubMedGoogle Scholar
  36. 36.
    Debonis D, Meguid MM, Laviano A et al (1995) Temporal changes in meal number and meal size relationship in response to rHu IL-1 alpha. Neuroreport 6:1752–1756PubMedCrossRefGoogle Scholar
  37. 37.
    Opara El, Laviano A, Meguid MM, Yang ZJ (1995) Correlation between food intake and CSF IL-1 alpha in anorectic tumor bearing rats. Neuroreport 6:750–752PubMedCrossRefGoogle Scholar
  38. 38.
    Yabuchi K, Minami M, Katsumata S, Satoh M (1994) Localization of type I interleukin-1 receptor mRNA in the rat brain. Brain Res Mol Brain Res 27:27–36CrossRefGoogle Scholar
  39. 39.
    Inui A(2001) Cytokines and sickness behavior: implications from knockout animal models. Trends Immunol 22:469–473Google Scholar
  40. 40.
    Meguid MM, Pichard C (2003) Cytokines: the mother of catabolic mediators! Curr Opin Clin Nutr Metab Care 6:383–386PubMedCrossRefGoogle Scholar
  41. 41.
    Laviano A, Meguid MM, Rossi Fanelli F (2003) Improving food intake in anorectic cancer patients. Curr Opin Clin Nutr Metab Care 6:421–426PubMedCrossRefGoogle Scholar
  42. 42.
    Langhans W, Hrupka B (1999) Interleukins and tumor necrosis factor as inhibitors of food intake. Neuropeptides 33:415–424PubMedCrossRefGoogle Scholar
  43. 43.
    Mantovani G, Macciò A, Mura L et al (2000) Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J Mol Med 78:554–561PubMedCrossRefGoogle Scholar
  44. 44.
    Sato T, Laviano A, Meguid MM et al (2003) Involvement of plasma leptin, insulin and free tryptophan in cytokine-induced anorexia. Clin Nutr 22:139–146PubMedCrossRefGoogle Scholar
  45. 45.
    Turrin NP, Gayle D, Ilyin SE et al (2001) Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 54:443–453PubMedCrossRefGoogle Scholar
  46. 46.
    Plata-Salaman CR (1996) Anorexia during acute and chronic disease. Nutrition 12:69–78PubMedCrossRefGoogle Scholar
  47. 47.
    Laviano A, Yang Z-J, Meguid MM et al (1995) Hepatic vagus does not mediate IL-1 alpha induced anorexia. Neuro Report 6:1266Google Scholar
  48. 48.
    Yang ZJ, Blaha V, Meguid MM et al (1999) Interleukin-1 a injection into ventromedial hypothalamic nucleus of normal rats depresses food intake and increases release of dopamine and serotonin. Pharmacol Biochem Behav 62:61–65PubMedCrossRefGoogle Scholar
  49. 49.
    Laviano A, Yang Z-J, Meguid MM et al (1994) A pilot study demonstrating reversal of cancer anorexia in the rat by the functional ablation of ventromedial nucleus of hypothalamus (VMH). Clin Nutr 13(S 1):22 (abs)CrossRefGoogle Scholar
  50. 50.
    Laviano A, Gleason JR, Meguid MM et al (2000) Effects of intra-VMN mianserin and IL-Ira on meal number in anorectic tumor-bearing rats. J Investig Med 48:40–48PubMedGoogle Scholar
  51. 51.
    Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52:72–91PubMedCrossRefGoogle Scholar
  52. 52.
    Inui A (1999) Cancer anorexia-cachexia syndrome: are neuropeptides the Key? Cancer Res 59:4493–4501PubMedGoogle Scholar
  53. 53.
    Sato T, Laviano A, Meguid MM et al (2003) Involvement of plasma leptin, insulin and free tryptophan in cytokine-induced anorexia. Clin Nutr 22:139–146PubMedCrossRefGoogle Scholar
  54. 54.
    Dunn AJ (1992) Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharmacol Exp Therap 261:964–969Google Scholar
  55. 55.
    Makarenko IG, Meguid MM, Gatto L et al (2005) Hypothalamic 5-HT1B receptor changes in anoretic tumor bearing rats. Neurosci Lett376:71–75PubMedCrossRefGoogle Scholar
  56. 56.
    Meguid MM, Ramos EJ, Laviano A et al (2004) Tumor anorexia: effects on neuropeptide Y and monoamines in paraventricular nucleus. Peptides 25:261–266PubMedCrossRefGoogle Scholar
  57. 57.
    Makarenko IG, Meguid MM, Ugrumov MV (2002) Distribution of serotonin 5HT IB in the normal rat hypothalamus. Neurosci Lett 328:155–159PubMedCrossRefGoogle Scholar
  58. 58.
    Mohankumar PS, Thyagarajan S, Quadri SK (1993) Interleukin-lbeta increases 5-hydroxyindoleacetic acid release in the hypothalamus in vivo. Brain Res Bull 31:745–748PubMedCrossRefGoogle Scholar
  59. 59.
    Makarenko IG, Meguid MM, Gatto L et al (2006) Cancer anorexia related changes of serotonin receptor (5-HT1B) and NPY using immunocytochemical visualization and semiquantitative image analysis in hypothalamus after tumor resection. Neurosci Lett 383:322–327CrossRefGoogle Scholar
  60. 60.
    Heisler LK, Cowley MA, Tecott LH et al (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 994:169–174PubMedGoogle Scholar
  61. 61.
    Marks DL, Ling N, Cone RD (2001) Role of the central melanocortin system in cachexia. Cancer Research 61:1432–1438PubMedGoogle Scholar
  62. 62.
    Fan W, Boston BA, Kesterson RA et al (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168PubMedCrossRefGoogle Scholar
  63. 63.
    Stair JN, Shu J, Camacho R et al (1999) Feeding behavior in rats chronically treated with melanocortin agonist, MTII. Soc Neurosci Abstr 25:619Google Scholar
  64. 64.
    Endres S, Ghorbani R, Kelley VE et al (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271PubMedCrossRefGoogle Scholar
  65. 65.
    Cooper AL, Gibbons L, Horan MA et al (1993) Effect of dietary fish oil supplementation on fever and cytokine production in human volunteers. Clin Nutr 12:321–328PubMedCrossRefGoogle Scholar
  66. 66.
    Meydani SN, Endres S, Woods MM et al (1991) Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J Nutr 121:547–555PubMedGoogle Scholar
  67. 67.
    Zurier RB (1993) Fatty acids, inflammation and immune responses. Prostaglandins Leukot Essent Fatty Acids 48:57–62PubMedCrossRefGoogle Scholar
  68. 68.
    Kumar GS, Das UN (1994) Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukin. Prostaglandins Leukot Essent Fatty Acids 50:331–334PubMedCrossRefGoogle Scholar
  69. 69.
    Hellerstein MK, Meydani SN, Meydani M et al (1989) Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. J Clin Invest 84:228–235PubMedCrossRefGoogle Scholar
  70. 70.
    Mulrooney HM, Grimble RF (1993) Influence of butter and of corn, coconut and fish oils on the effects of recombinant human tumor necrosis factor-alpha in rats. Clin Sci (Colch) 84:105–112Google Scholar
  71. 71.
    Cooper AL, Rothwell NJ (1993) Inhibition of the thermogenic and pyrogenic responses to interleukin-1 beta in the rat by dietary N-3 fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 49:615–626PubMedCrossRefGoogle Scholar
  72. 72.
    Dagnelie PC, Bell JD, Williams SC et al (1994) Effect of fish oil on cancer cachexia and host liver metabolism in rats with prostate tumors. Lipids 29:195–203PubMedCrossRefGoogle Scholar
  73. 73.
    Tisdale MJ (2000) Biomedicine. Protein loss in cancer cachexia. Science 289:2293–2294PubMedCrossRefGoogle Scholar
  74. 74.
    Rose DP, Connolly JM, Meschter CL (1991) Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J Nat Cancer Ins 83:1491–1495CrossRefGoogle Scholar
  75. 75.
    Mukutmoni-Norris M, Hubbard NE, Erickson KL (2000) Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil. Cancer Lett 150:101–109PubMedCrossRefGoogle Scholar
  76. 76.
    Abeywardena MY, Head RJ (2001) Long chain n-3 polyunsaturated fatty acids and blood vessel function. Cardiovasc Res 52:361–371PubMedCrossRefGoogle Scholar
  77. 77.
    Terano T, Shiina T, Tamura Y (1996) Eicosapentaenoic acid suppressed the proliferation of vascular smooth muscle cells through modulation of various steps of growth signals. Lipids 31:S301–S304PubMedCrossRefGoogle Scholar
  78. 78.
    Diep QN, Touyz RM, Schiffrin EL (2002) Docosahexaenoic acid, a peroxisome proliferatoractivated receptor-a ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension 36:851–855Google Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Eduardo J. B. Ramos
    • 1
  • Carolina G. Goncalves
    • 1
  • Susumu Suzuki
    • 1
  • Akio Inui
    • 2
  • Alessandro Laviano
    • 3
  • Michael M. Meguid
    • 1
  1. 1.Department of Surgery, Surgical Metabolism and Nutrition Laboratory, Neuroscience ProgramsUniversity Hospital, Upstate Medical UniversitySyracuseUSA
  2. 2.Department of Behavioral MedicineKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  3. 3.Department of Clinical MedicineUniversity of Rome La SapienzaRomeItaly

Personalised recommendations