Skip to main content

The Ubiquitin/Proteasome System in Cancer Cachexia

  • Chapter
Cachexia and Wasting: A Modern Approach

Abstract

Cancer cachexia (CC) is probably the most debilitating and life-threatening paraneoplastic syndrome. It is characterised by weight loss, anorexia, asthaenia, loss of skeletal muscle protein, depletion of lipid stores, and severe metabolic alterations. CC syndrome is present in about 50% of cancer patients, especially those with tumours of the gastrointestinal tract and lung, and less frequently in those with haematological malignancies and other solid neoplasms, such as breast and thyroid cancer. The majority of terminally ill cancer patients experiences CC, which accounts for about 20% of cancer deaths. This figure translates into approximately 2000000 deaths per year worldwide [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management CA Cancer J Clin 52:72–91

    Article  Google Scholar 

  2. Muscaritoli M, Bossola M, Bellantone R, Rossi Fanelli F (2004) Therapy of muscle wasting in cancer; what is the future? Curr Opin Clin Nutr Metab Care 7:459–466

    Article  PubMed  CAS  Google Scholar 

  3. Hasselgren PO, Fischer JE (2001) Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 233:9–17

    Article  PubMed  CAS  Google Scholar 

  4. Costelli P, Baccino FM (2003) Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis. Curr Opin Clin Nutr Metab Care 6:407–412

    Article  PubMed  CAS  Google Scholar 

  5. Langhans W (2002) Peripheral mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 5:419–426

    Article  PubMed  CAS  Google Scholar 

  6. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21

    Article  PubMed  CAS  Google Scholar 

  7. Lecker SH (2003) Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways? Curr Opin Clin Nutr Metab Care 6:271–275

    Article  PubMed  CAS  Google Scholar 

  8. Medina R, Wing SS, Haas A et al (1991) Activation of the ubiquitin-ATP-dependent proteolytic systems in skeletal muscle during fasting and denervation atrophy. Biomed Biochem Acta 50:347–356

    CAS  Google Scholar 

  9. Bailey GL, Wang X, England BK et al (1996) The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin proteasome pathway. J Clin Invest 97:1447–1453

    PubMed  CAS  Google Scholar 

  10. Tawa NE, Odessey R, Goldberg AL (1997) Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscle. J Clin Invest 100:197–203

    PubMed  CAS  Google Scholar 

  11. Price SR, Bailey JL, Wang X et al (1996) Muscle wasting in insulinopenic rats results from activation of the ATP-dependent ubiquitin proteasome proteolytic pathway by a mechanism including gene transcription. J Clin Invest 98:1703–1708

    PubMed  CAS  Google Scholar 

  12. Llovera M, Garcia-Martinez C, Agell N et al (1994) Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett 338:311–318

    Article  PubMed  CAS  Google Scholar 

  13. Temparis S, Asensi M, Taillandier D et al (1994) Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res 54:5568–5573

    PubMed  CAS  Google Scholar 

  14. Costelli P, Garcia-Martinez C, Llovera M et al (1995) Muscle protein wasting in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway. J Clin Invest 95:2367–2372

    Article  PubMed  CAS  Google Scholar 

  15. Costelli P, Bossola M, Muscaritoli M et al (2002) Anticytokine treatment prevents the increase in the activity of ATP-ubiquitinand Ca(2+)-dependent proteolytic systems in the muscle of tumourbearing rats. Cytokine 19:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  PubMed  CAS  Google Scholar 

  17. Wray CJ, Mammen JM, Hershko DD et al (2003) Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35:698–705

    Article  PubMed  CAS  Google Scholar 

  18. Dehoux M, Van Beneden R, Fernandez-Celemin L et al (2003) Induction of MafBx and Murf ubiquitin ligase m-RNAs in rat skeletal muscles after LPS injection. FEBS Lett 544:214–217

    Article  PubMed  CAS  Google Scholar 

  19. Jagoe RT, Lecker SH, Gomez M et al (2002) Patterns of gene expression in atrophying skeletal muscle: response to food deprivation. FASEB J 16:1697–1712

    Article  PubMed  CAS  Google Scholar 

  20. Lecker SH, Jagoe RT, Gilbert A et al (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  PubMed  CAS  Google Scholar 

  21. Williams A, Sun X, Fischer JE et al (1999) The expression of genes in the ubiquitin proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–750

    PubMed  CAS  Google Scholar 

  22. Bossola M, Muscaritoli M, Costelli P et al (2001) Increased muscle ubiquitin mRNA levels in gastric cancer patients Am J Physiol Regul Integr Comp Physiol 280:R1518–R1523

    PubMed  CAS  Google Scholar 

  23. Bossola M, Muscaritoli M, Costelli P et al (2003) Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann Surg 237:384–389

    Article  PubMed  Google Scholar 

  24. Jagoe RT, Redfern CP, Roberts RG et al (2002) Skeletal muscle m-RNA levels for cathepsin-B, but not components of the ubiquitin proteasome pathway are increased in patients with lung cancer referred for thoracotomy. Clin Sci 102:353–361

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Muscaritoli, M., Bossola, M., Doglietto, G.B., Fanelli, F.R. (2006). The Ubiquitin/Proteasome System in Cancer Cachexia. In: Mantovani, G., et al. Cachexia and Wasting: A Modern Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-0552-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0552-5_48

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0471-9

  • Online ISBN: 978-88-470-0552-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics