Skip to main content

Abstract

Cancer cachexia is one of the worst effects of malignancy, accounting for nearly a third of cancer deaths. It is a pathological state characterised by weight loss together with anorexia, weakness, anaemia, and asthaenia. The complications associated with the appearance of the cachectic syndrome affect both the physiological and biochemical balance of the patient and influence the efficiency of anticancer treatment, resulting in a considerably decreased survival time. At the metabolic level, cachexia is associated with loss of body lipid stores. Alterations in lipid metabolism are partially mediated by changes in circulating hormone concentrations (insulin, glucagon, and glucocorticoids, in particular) or in their effectiveness. However, a large number of observations point towards cytokines, polypeptides released mainly by immune cells, as the molecules responsible for the above-mentioned metabolic derangements. The role of humoral factors in fat metabolism in the cancer patient has been discussed; among cytokines, tumour necrosis factor-α (TNF-α) seems to have a key role in the lipid metabolic changes associated with cancer cachexia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson MP, Koons JE, Tan ETH, Grigor MR (1981) Modified lipoprotein lipase activities, rates of lipogenesis, and lipolysis as factors leading to lipid depletion in C57BL mice bearing the preputial gland tumor, ESR-586. Cancer Res 41:3228–3232

    PubMed  CAS  Google Scholar 

  2. Shaw JHF, Wolfe RR (1987)) Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 205:368–376

    Article  PubMed  CAS  Google Scholar 

  3. Imagawa W, Bandyopadhyay G, Wallace D, Nadi S (1989) Phospholipids containing polyunsaturated acyl groups are mitogenic for normal mouse mammary epithelial cells in serum free primary cell culture. Proc Natl Acad Sci USA 86:4122–4126

    Article  PubMed  CAS  Google Scholar 

  4. Lanza-Jacoby S, Lansey SC, Miller EE, Cleary MP (1984) Sequential changes in the activities of lipoprotein lipase and lipogenic enzymes during tumor growth in rats. Cancer Res 44:5062–5067

    PubMed  CAS  Google Scholar 

  5. Noguchi Y, Vydelingum NA, Younes RN et al (1991) Tumor-induced alterations in tissue lipoprotein lipase activity and mRNA levels. Cancer Res 51:863–869

    PubMed  CAS  Google Scholar 

  6. Muscaritoli M, Cangiano C, Cascino A et al (1990) Plasma clearance of exogenous lipids in patients with malignant disease. Nutrition 6:147–151

    PubMed  CAS  Google Scholar 

  7. López-Soriano J, Argilés JM, López-Soriano FJ (1996) Lipid metabolism in rats bearing the Yoshida AH-130 ascites hepatoma. Mol Cell Biochem 165:17–23

    Article  PubMed  Google Scholar 

  8. Evans RD, Williamson DH (1988) Tissue-specific effects of rapid tumour growth on lipid metabolism in the rat during lactation and on litter removal. Biochem J 252:65–72

    PubMed  CAS  Google Scholar 

  9. Mulligan HD, Tisdale MJ (1991) Lipogenesis in tumour and host tissues in mice bearing colonic adenocarcinomas. Br J Cancer 63:719–722

    PubMed  CAS  Google Scholar 

  10. Dessi S, Batetta B, Pulisci D et al (1991) Total and HDL cholesterol in human and hematologie neoplasms. Int J Hematol 54:483–486

    PubMed  CAS  Google Scholar 

  11. Dessi S, Batetta B, Anchisi C et al (1992) Cholesterol metabolism during the growth of a rat ascites hepatoma (Yoshida AH-130). BrJ Cancer 66:787–793

    CAS  Google Scholar 

  12. Dessi S, Batetta B, Spano O et al (1995) Perturbations of triglycerides but not of cholesterol metabolism are prevented by anti-tumour necrosis factor-a treatment in rats bearing an ascites hepatoma (Yoshida AH-130). BrJ Cancer 72:1138–1143

    CAS  Google Scholar 

  13. Eisenberg S (1984) High density lipoprotein metabolism. J Lipid Res 25:1017–1058

    PubMed  CAS  Google Scholar 

  14. Fanelli FR, Cangiano C, Muscaritoli M et al (1995) Tumor-induced changes in host metabolism: a possible marker of neoplastic disease. Nutrition 11:595–600

    Google Scholar 

  15. Price SR, Olivecrona T, Pekala PH (1986) Regulation of lipoprotein lipase synthesis by recombinant tumour necrosis factor: the primary regulatory role of the hormone in 3T3-L1 adipocytes. Arch Biochem Biophys 251:738–746

    Article  PubMed  CAS  Google Scholar 

  16. Cornelius P, Enerback S, Bjursell G et al (1988) Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumour necrosis factor. Biochem J 249:765–769

    PubMed  CAS  Google Scholar 

  17. Fried SK, Zechner R (1989) Cachectin/tumour necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res 30:1917–1923

    PubMed  CAS  Google Scholar 

  18. Semb H, Peterson J, Tavernier J, Olivecrona T (1987) Multiple effects of tumour necrosis factor on lipoprotein lipase in vivo. J Biol Chem 262:8390–8394

    PubMed  CAS  Google Scholar 

  19. Evans RD, Williamson DH (1988) Tumour necrosis factor-a (cachectin) mimics some of the effects of tumour growth on the disposal of α [14C]lipid load in virgin, lactating and litter-removed rats. Biochem J 256:1055–1058

    PubMed  CAS  Google Scholar 

  20. Feingold KR, Grunfeld C (1987) Tumour necrosis factor-a stimulates hepatic lipogenesis in the rat in vivo. J Clin Invest 80:1384–1389

    Google Scholar 

  21. Krauss RM, Grunfeld C, Doerrler WT, Feingold KR (1990) Tumor necrosis factor acutely increases plasma levels of very low density lipoproteins of normal size and composition. Endocrinology 127:1016–1021

    PubMed  CAS  Google Scholar 

  22. Kern PA (1988) Recombinant human tumor necrosis factor does not inhibit lipoprotein lipase in primary cultures of isolated human adipocytes. J Lipid Res 29:909–914

    PubMed  CAS  Google Scholar 

  23. Kawakami M, Murase T, Ogawa H et al (1987) Human recombinant TNF suppresses lipoprotein lipase activity and stimulates lipolysis in 3T3-L1 cells. J Biochem 101:331–338

    PubMed  CAS  Google Scholar 

  24. Feingold KR, Doerrler W, Dinarello CA et al (1992) Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and interferons is blocked by inhibition of prostaglandins synthesis. Endocrinology 130:10–16

    Article  PubMed  CAS  Google Scholar 

  25. Hauner H, Petruschke T, Russ M et al (1995) Effects of tumor necrosis factor-alpha (TNF-a) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia 38:764–771

    Article  PubMed  CAS  Google Scholar 

  26. Pape ME, Kim KH (1988) Effect of tumor necrosis factor on acetyl-coenzyme A carboxylase gene expression and pre-adipocyte differentiation. Mol Endocrinol 2:395–403

    Article  PubMed  CAS  Google Scholar 

  27. Carbö N, Costelli P, Tessitore L et al (1994) Antitumor necrosis factor-a treatment interferes with changes in lipid metabolism in a cachectic tumor model. Clin Sci 87:349–355

    PubMed  Google Scholar 

  28. Patton JS, Shepard HM, Wilking H et al (1986) Interferons and tumor necrosis factors have similar catabolic effects on 3T3 LI cells. Proc Natl Acad Sci USA 83:8313–8317

    Article  PubMed  CAS  Google Scholar 

  29. Tisdale MJ (1999) Wasting in cancer. J Nutr 129(1S Suppl):243S–246S

    PubMed  CAS  Google Scholar 

  30. Gregoire F, De Broux N, Hauser N et al (1992) Interferon-gamma and interleukin-1 beta inhibit adipoconversion in cultured rodent preadipocytes. J Cell Physiol 151:300–309

    Article  PubMed  CAS  Google Scholar 

  31. Grunfeld C, Adi S, Soued M et al (1990) Search for mediators of the lipogenic effects of tumor necrosis factor: potential role for interleukin 6. Cancer Res 50:4233–4238

    PubMed  CAS  Google Scholar 

  32. Grunfeld C, Soued M, Adi S et al (1990) Evidence for two classes of cytokines that stimulate hepatic lipogenesis: relationships among tumor necrosis factor, interleukin-1 and interferon-alpha. Endocrinology 127:46–54

    Article  PubMed  CAS  Google Scholar 

  33. Grunfeld C, Soued M, Adi S et al (1991) Interleukin 4 inhibits stimulation of hepatic lipogenesis by tumor necrosis factor, interleukin 1, and interleukin 6 but not by interferon-alpha. Cancer Res 51:2803–2807

    PubMed  CAS  Google Scholar 

  34. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human analogue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  35. Phillips MS, Liu Q, Hammond HA et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19

    Article  PubMed  CAS  Google Scholar 

  36. Madej T, Boguski MS, Bryant SH (1995) Threading analysis suggests that the obese gene product may be a helical cytokine. FEBS Lett 373:13–18

    Article  PubMed  CAS  Google Scholar 

  37. Hamann A, Matthaei S (1996) Regulation of energy balance by leptin. Exp Clin Endocrinol Diabetes 104:293–300

    Article  PubMed  CAS  Google Scholar 

  38. Grunfeld C, Zhao C, Fuller Jet al (1996) Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. A role for leptin in the anorexia of infection. J Clin Invest 97:2152–2157

    PubMed  CAS  Google Scholar 

  39. Tanaka J, Nomura M (1993) Involvement of neurons sensitive to angiotensin II in the median preoptic nucleus in the drinking response induced by angiotensin II activation of the subfornical organ in rats. Exp Neurol 119:235–239

    Article  PubMed  CAS  Google Scholar 

  40. Rothwell NJ (1993) Cytokines and thermogenesis. IntJ Obesity 17:S98–S101

    Google Scholar 

  41. Remesar X, Rafecas I, Fernandez-López JA, Alemany M (1997) Is leptin an insulin counter-regulatory hormone? FEBS Lett 402:9–11

    Article  PubMed  CAS  Google Scholar 

  42. Sprengers ED, Kluft C (1987) Plasminogen activator inhibitors. Blood 69:381–387

    PubMed  CAS  Google Scholar 

  43. Astrup T (1978) Fibrinolysis: an overview. In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis. Raven Press, New York, pp 1–57

    Google Scholar 

  44. Vassalli JD, Sappini AP, Belin D (1991) The plasminogen activator/plasmin system. J Clin Invest 88:1067–1072

    PubMed  CAS  Google Scholar 

  45. McGill JB, Schneider DJ, Arfken CL et al (1994) Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 43:104–109

    Article  PubMed  CAS  Google Scholar 

  46. Vague P, Juhan-Vague I, Chabert V et al (1989) Fat distribution and plasminogen activator inhibitor activity in nondiabetic obese women. Metab Clin Exp 38:913–915

    PubMed  CAS  Google Scholar 

  47. Samad F, Yamamoto K, Loskutoff DJ (1996) Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-a and lipopolysaccharide. J Clin Invest 97:37–46

    Article  PubMed  CAS  Google Scholar 

  48. Flier JS, Cook KS, Usher P, Spiegelman BM (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405–408

    Article  PubMed  CAS  Google Scholar 

  49. Napolitano A, Lowell BB, Damm D et al (1994) Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int J Obesity 18:213–218

    CAS  Google Scholar 

  50. Cianflone K, Roncari DA, Maslowska M et al (1994) Adipsin/acylation stimulating protein system in human adipocytes: regulation of triacylglycerol synthesis. Biochemistry 33:9489–9495

    Article  PubMed  CAS  Google Scholar 

  51. Tao Y, Cianflone K, Sniderman AD et al (1997) Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim Biophys Acta 1344:221–229

    PubMed  CAS  Google Scholar 

  52. Maslowska M, Sniderman AD, Germinario R, Cianflone K (1997) ASP stimulates glucose transport in cultured human adipocytes. Int J Obesity 21:261–266

    Article  CAS  Google Scholar 

  53. Cianflone K, Maslowska M, Sniderman AD (1995) The acylation stimulating protein-adipsin system. Int J Obesity 19:S34–S38

    Google Scholar 

  54. Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697–10703

    Article  PubMed  CAS  Google Scholar 

  55. Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  PubMed  CAS  Google Scholar 

  56. Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentration of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599

    PubMed  CAS  Google Scholar 

  57. Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to Clq, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  PubMed  CAS  Google Scholar 

  58. Fruebis J, Tsao TS, Javorschi S et al (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 98:2005–2010

    Article  PubMed  CAS  Google Scholar 

  59. Frübeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell MA (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 280:E827–E847

    Google Scholar 

  60. Raymond NC, Dysken M, Bettin K et al (2000) Cytokine production in patients with anorexia nervosa, bulimia nervosa, and obesity. Int J Eating Disord 28:293–302

    Article  CAS  Google Scholar 

  61. Bastard JP, Jardel C, Bruckert E et al (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85:3338–3342

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Argilés, J.M., Almendro, V., Busquets, S., López-Soriano, F.J. (2006). Cancer Cachexia and Fat Metabolism. In: Mantovani, G., et al. Cachexia and Wasting: A Modern Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-0552-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0552-5_42

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0471-9

  • Online ISBN: 978-88-470-0552-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics