Pathophysiology of Cachexia in the Elderly

  • Osama QuBaiah
  • John E. Morley


The physiological decline in food intake that occurs with aging is an appropriate response to the reduced physical activity of this population. This physiological decline is termed the ‘anorexia of aging’ [1]; however, cachexia in the elderly seems to be reaching epidemic levels, with 30–40% of men and women over age 75 being 10% underweight or more [2]. There is no agreed upon definition for cachexia, which means ‘poor condition’ in Greek [3]. While it has traditionally been thought that chronic illness fully explains the pathogenesis of cachexia, this concept is proving inadequate [4]. In general, cachexia is characterised by weight loss due to loss of fat and skeletal muscle mass [5].


Lipoprotein Lipase Essential Tremor Skeletal Muscle Mass Mini Nutritional Assessment Cancer Cachexia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morley JE (2002) Pathophysiology of anorexia. Clin GeriatrMed 18:661–673CrossRefGoogle Scholar
  2. 2.
    Thomas D (2002) Undernutrition in the elderly. Clin Geriatr Med 18:xiii–xivCrossRefGoogle Scholar
  3. 3.
    Kotler D (2000) Cachexia. Ann Intern Med 133:622–634PubMedGoogle Scholar
  4. 4.
    Anker S (2002) Cachexia: time to receive more attention. Int J Cardiol 85:5–6PubMedCrossRefGoogle Scholar
  5. 5.
    Tisdale M (1997) Biology of cachexia. J Natl Cancer Inst 89:1763–1773PubMedCrossRefGoogle Scholar
  6. 6.
    Rayner CK, Macintosh CG, Chapman IM et al (2000) Effects of age on proximal gastric motor and sensory function. Scand J Gastroenterol 35:1041–1047PubMedCrossRefGoogle Scholar
  7. 7.
    Morley JE, Kumar VB, Mattammal MB et al (1996) Inhibition of feeding by nitric oxide synthase inhibitor: effects of aging. Eur J Pharmacol 31:15–19CrossRefGoogle Scholar
  8. 8.
    Clarkston WK, Pantano MM, Morley JE et al (1997) Evidence for the anorexia of aging: gastrointestinal transit and hunger in healthy elderly vs. young adults. Am J Physiol 272:R243–R248PubMedGoogle Scholar
  9. 9.
    Horowitz M, Maddern G, Chatterton BE et al (1984) Changes in gastric emptying rates with age. Clin Sci (Colch) 67:213–218Google Scholar
  10. 10.
    Horowitz M, Wishart JM, Jones KL, Hebbard GS (1996) Gastric emptying in diabetes: an overview. Diabet Med 13:S16–S22PubMedGoogle Scholar
  11. 11.
    Wegener M, Borsch G, Schaffstein J et al (1988) Effect of acing on the gastrointestinal transit of a lactulose-supplemented mixed solid-liquid meal in humans. Digestion 39:40–46PubMedGoogle Scholar
  12. 12.
    Macintosh CG, Sheehan J, Davani N et al (2001) Effects of aging on the opioid modulation of feeding in humans. J Am Geriatr Soc 49:1518–1524PubMedCrossRefGoogle Scholar
  13. 13.
    Silver AJ, Flood JF, Morley JE (1988) Effects of gastrointestinal peptides on ingestion in old and young mice. Peptides 9:221–225PubMedCrossRefGoogle Scholar
  14. 14.
    MacIntosh CG, Morley JE, Wishart J et al (2001) Effect of exogenous cholecystokinin (CCK)-8 on food intake and plasma CCK, leptin, and insulin concentration in older and young adults: evidence for increase CCK activity as a cause of the anorexia of aging. J Clin Endocrinol Metab 86:5830–5837PubMedCrossRefGoogle Scholar
  15. 15.
    Levine AS, Morley JE, Wishart J et al (1986) Neuropeptides as regulators of consummatory behavior. J Nutr 116:2067–2077PubMedGoogle Scholar
  16. 16.
    Macintosh CG, Andrews JM, Jones KL et al (1999) Effects of age on concentrations of plasma cholecystokinin, glucagons-like peptide 1, and peptide YY and their relation to appetite and pyloric motility. Am J Clin Nutr 69:999–1006PubMedGoogle Scholar
  17. 17.
    Morley JE, Flood JF, Horwitz M et al (1994) Modulation of food intake by peripherally administered amylin. Am J Physiol 267:R178–R184PubMedGoogle Scholar
  18. 18.
    Morley JE, Perry MH, Baumgartner RP et al (1999) Leptin, adipose tissue and aging is there a role for testosterone? J Gerontol A Biol Sci Med Sci 54:B108–B109PubMedGoogle Scholar
  19. 19.
    Baumgartner RN, Waters DL, Morley JE et al (1999) Age related changes in sex hormones affect the sex difference in serum leptin independently of changes in body fat. Metabolism 48:378–384PubMedCrossRefGoogle Scholar
  20. 20.
    Baumgartner RN, Waters DL, Gallagher D et al (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107:123–136PubMedCrossRefGoogle Scholar
  21. 21.
    Morley JE, Farr SA, Suarez MD et al (1995) Nitric oxide synthase inhibition and food intake: effects on motivation to eat in female mice. Pharmacol Biochem Behav 50:369–373PubMedCrossRefGoogle Scholar
  22. 22.
    Gosnell BA, Levin AS, Morley JE (1983) The effects of aging on opioid modulation of feeding in rats. Life Sci 32:2793–2799PubMedCrossRefGoogle Scholar
  23. 23.
    Kavaliers M, Hirst M (1985) The influence of opiate agonists on day-night feeding rhythms in young and old mice. Brain Res 326:160–167PubMedCrossRefGoogle Scholar
  24. 24.
    van Staveren WA, de Graaf C, de Groot LCPGM (2002) Regulation of appetite in frail persons. Clin Geriatr Med 18:675–684PubMedCrossRefGoogle Scholar
  25. 25.
    De Graaf C, Polet P, van Staveren WA (1994) Sensory perception and pleasantness of food flavors in elderly subjects. J Gerontol A Biol Sci Med Sci 49:P93–P99Google Scholar
  26. 26.
    Griep MI, Mets TF, Massart DL (1997) Different effects of flavor amplification of nutrient dense foods on preference and consumption in young and elderly subjects. Food Quality and Preference 8:151–156CrossRefGoogle Scholar
  27. 27.
    De Castro JM (1995) Social facilitation of food intake in humans. Appetite 24:260PubMedCrossRefGoogle Scholar
  28. 28.
    Feunekes GI, de Graaf C, van Staveren WA (1995) Social facilitation of food intake is mediated by meal duration. Physiol Behav 58:551–558PubMedCrossRefGoogle Scholar
  29. 29.
    Morley JE, Morley PMK (1995) Psychological and social factors in the pathogenesis of weight loss. Annu Rev Gerontol Geriatr 15:83–109Google Scholar
  30. 30.
    Morley JE (1997) Anorexia of aging: physiologic and pathologic. Am J Clin Nutr 66:760–773PubMedGoogle Scholar
  31. 31.
    De Groot CP, van Staveren WA, de Graaf C (2000) Determinants of macronutrient intake in elderly people. Eur J Clin Nutr 54(Suppl 3):S70–S76PubMedGoogle Scholar
  32. 32.
    Morley JE, Baumgartner RN, Roubenoff R et al (2001) Sarcopenia. J Lab Clin Med 137:231–243PubMedCrossRefGoogle Scholar
  33. 33.
    Morley JE, Perry HM (2003) Androgen treatment of male hypogonadism in older males. J Steroid Biochem Mol Biol 85:367–373PubMedCrossRefGoogle Scholar
  34. 34.
    Wittert GA, Chapman IM, Haren MT et al (2003) Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J Gerontol Med Sci 58:618–625Google Scholar
  35. 35.
    McNally EM (2004) Powerful genes—myostatin regulation of human muscle mass. N Engl J Med 350:2642–2644PubMedCrossRefGoogle Scholar
  36. 36.
    Schuelke M, Wagner KR, Stolz LE et al (2004) Brief report—myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688PubMedCrossRefGoogle Scholar
  37. 37.
    Adami F, Guarini A, Pini M et al (1994) Serum levels of TNF alpha in patients with B-cell chronic lymphocytic leukemia. Eur J Cancer 30A:1259–1263PubMedCrossRefGoogle Scholar
  38. 38.
    Shaarawy M, Abdel-Aziz O (1992) Serum TNF alpha levels in benign and malignant lesions of the endometrium in postmenopausal women, a preliminary study. Acta Oncol 31:417–420PubMedGoogle Scholar
  39. 39.
    Matthys P, Billiau A (1997) Cytokines and cachexia. Nutrition 13:763–769PubMedCrossRefGoogle Scholar
  40. 40.
    Tracey KJ, Morgello S, Koplin B et al (1990) Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. J Clin Invest 86:2014–2024PubMedGoogle Scholar
  41. 41.
    Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684PubMedGoogle Scholar
  42. 42.
    Soda K, Kawakami M, Kashii K, Miyata M (1995) Manifestations of cancer cachexia induced by colon 26 adenocarcinoma are not fully ascribable to Interleukin-6. Int J Cancer 62:332–336PubMedCrossRefGoogle Scholar
  43. 43.
    Strassmann G, Fong M, Freter CE et al (1993) Suramin interferes with interleukin-6 receptor binding in vitro and inhibits colon-25 mediated experimental cancer cachexia in vivo. J Clin Invest 92:2152–2159PubMedGoogle Scholar
  44. 44.
    Strassmann G, Masui Y, Chizzonite R et al (1993) Mechanisms of experimental cancer cachexia. Local involvement of IL-1 in colon-26 tumor. J Immunol 150:2341–2345PubMedGoogle Scholar
  45. 45.
    Fujimoto-Ouchi K, Tamura S, Mori K et al (1995) Establishment and characterization of cachexiainducing and non-inducing clones of murine colon 26 carcinoma. Int J Cancer 61:522–528PubMedCrossRefGoogle Scholar
  46. 46.
    Yasumoto K, Mukaida N, Harada A et al (1995) Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice. Cancer Res 55:921–927PubMedGoogle Scholar
  47. 47.
    Mori K, Fujimoto-Ouchi K, Ishikawa T et al (1996) Murine interleukin-12 prevents the development of cancer cachexia in a murine model. Int J Cancer 67:849–855PubMedCrossRefGoogle Scholar
  48. 48.
    Tsujinaka T, Fujita J, Ebisui C et al (1996) Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 97:244–249PubMedGoogle Scholar
  49. 49.
    Goodman MN (1994) Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 205:182–185PubMedGoogle Scholar
  50. 50.
    Ebisui C, Tsujinaka T, Morimoto T et al (1995) Interleukin-6 induces proteolysis by activating intracellular proteases (cathepsins B and L, proteasome) in C2C12 myotubes. Clin Sci (Colch) 89:431–439Google Scholar
  51. 51.
    Scott HR, McMillan DC, Crilly A et al (1996) The relationship between weight loss and interleukin 6 in non-small-cell-lung cancer. Br J Cancer 73:1560–1562PubMedGoogle Scholar
  52. 52.
    Moldawer LL, Andersson C, Gelin J, Lundholm KG (1988) Regulation of food intake and hepatic protein synthesis by recombinanant-derived cytokines. Am J Physiol 254:G450–G456PubMedGoogle Scholar
  53. 53.
    Fong Y, Moldawer LL, Marano M et al (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Phsiol 256:R659–R665Google Scholar
  54. 54.
    Costelli P, Llovera M, Carbo N et al (1991) Interleukin-1 receptor antagonist (IL-Ira) is unable to reverse cachexia in rats bearing an ascites hepatoma(YoshidaAH-130). Cancer Res 51:415–421Google Scholar
  55. 55.
    Nixon DW, Heymsfield SB, Cohen AE et al (1980) Protein caloric undernutrition in hospitalized cancer patients. Am J Med 68:683–690PubMedCrossRefGoogle Scholar
  56. 56.
    Shapot VS, Blinov VA (1974) Blood glucose levels and gluconeogenesis in animals bearing transplantable tumors. Cancer Res 34:1827–1832PubMedGoogle Scholar
  57. 57.
    Lundholm K, Bylund AC, Holm J, Schersten T (1976) Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer 12:465–473PubMedGoogle Scholar
  58. 58.
    Emery PW, Edwards RH, Rennie MJ et al (1984) Protein synthesis measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 289:584–586CrossRefGoogle Scholar
  59. 59.
    Fearon KC, Hansell DT, Preston T et al (1988) Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res 48:2590–2595PubMedGoogle Scholar
  60. 60.
    Holm E, Hagmuller E, Staedt U et al (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55:1373–1378PubMedGoogle Scholar
  61. 61.
    Kurzrock R, Rohde MF, Quesada JR et al (1986) Recombinant gamma-interferon induces hypertriglyceridemia and inhibits postheparin lipase activity in cancer patients. J Exp Med 164:1093–1101PubMedCrossRefGoogle Scholar
  62. 62.
    Grégoire F, Broux N, Hauser N et al (1992) Interferongamma and interleukin-1 beta inhibit adipoconversion in cultured rodent preadipocytes. J Cell Physiol 151:300–309PubMedCrossRefGoogle Scholar
  63. 63.
    Memon RA, Feingold KR, Moser AH et al (1992) In vivo effects of interferon-alpha and interferongamma on lipolysis and ketogenesis. Endocrinology 131:1695–1702PubMedCrossRefGoogle Scholar
  64. 64.
    Matthys P, Dijkmans R, Proost P et al (1991) Severe cachexia in mice inoculated with interferongamma-producing tumor cells. Int J Cancer 49:77–82PubMedCrossRefGoogle Scholar
  65. 65.
    Matthys P, Heremans H, Opdenakker G et al (1991) Anti-interferon-gamma antibody treatment, growth of Lewis lung tumors in mice and tumor-associated cachexia. Eur J Cancer 27:182–187PubMedCrossRefGoogle Scholar
  66. 66.
    Langstein HN, Doherty GM, Fraker DL et al (1991) The roles of gamma-interferon and tumor necrosis factor alpha in an experimental rat model of cancer cachexia. Cancer Res 51:2302–2306PubMedGoogle Scholar
  67. 67.
    Mori M, Yamaguchi K, Honda S et al (1991) Cancer cachexia syndrome developed in nude mice bearing melanoma cells producing leukemia-inhibitory factor. Cancer Res 51:6656–6659PubMedGoogle Scholar
  68. 68.
    Kralovic RC, Zepp FA, Cenedella RJ (1977) Study of the mechanism of carcass fat depletion in experimental cancer. Eur J Cancer 13:1071–1079PubMedGoogle Scholar
  69. 69.
    Kitada S, Hays EF, Mead JF (1980) A lipid mobilizing factor in serum of tumor-bearing mice. Lipids 15:168–174PubMedCrossRefGoogle Scholar
  70. 70.
    Groundwater P, Beck SA, Barton C et al (1990) Alteration of serum and urinary lipoltytic activity with weight loss in cachectic cancer patients. Br J Cancer 62:816–821PubMedGoogle Scholar
  71. 71.
    Beck SA, Groundwater P, Barton C, Tisdale MJ (1990) Alterations in serum lipolytic activity of cancer patients with response to therapy. Br J cancer 62:822–825Google Scholar
  72. 72.
    Beck SA, Tisdale MJ (1987) Production of lipolytic and proteolytic factors by a murine tumor-producing cachexia in the host. Cancer Res 47:5919–5923PubMedGoogle Scholar
  73. 73.
    Beck SA, Mulligan HD, Tisdale MJ (1990) Lipolytic factors associated with murine and human cancer cachexia. J Natl Cancer Inst 82:1922–1926PubMedCrossRefGoogle Scholar
  74. 74.
    Smith KL, Tisdale MJ (1993) Mechanism of muscle degradation in cancer cachexia. Br J Cancer 68:314–318PubMedGoogle Scholar
  75. 75.
    Belizario JE, Katz M, Chenker E, Raw I (1991) Bioactivity of skeletal muscle proteolysis-inducing factors in the plasma proteins from cancer patients with weight loss. Br J Cancer 63:705–710PubMedGoogle Scholar
  76. 76.
    Flier JS, Maratos-Flier E (2002) The stomach speaksghrelin and weight regulation. N Engl J Med 346:1662–1663PubMedCrossRefGoogle Scholar
  77. 77.
    Bowers CY (2001) Unnatural growth hormone-releasing peptide begets natural ghrelin. J Clin Edocrinol Metab 86:1464–1469CrossRefGoogle Scholar
  78. 78.
    Inui A, Meguid MM (2002) Ghrelin and cachexia. Diabetes Obes Metab 4:431PubMedCrossRefGoogle Scholar
  79. 79.
    Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913PubMedCrossRefGoogle Scholar
  80. 80.
    Wren AM, Seal LJ, Cohen MA et al (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992PubMedCrossRefGoogle Scholar
  81. 81.
    Marks DL, Cone RD (2001) Central melanocortins and the regulation of weight during acute and chronic disease. Program Abstr Endocr Soc Annu Meet 56:369–375Google Scholar
  82. 82.
    Jacobowitz DM, O’Donohue TL (1978) Alphamelanocyte-stimulating hormone: immunohistochemical identification and mapping in neurons of rat brain. Proc Natl Academic Science 75:6300–6304CrossRefGoogle Scholar
  83. 83.
    Huszar D, Lynch CA, Fairchild-Huntress V et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141PubMedCrossRefGoogle Scholar
  84. 84.
    Wilson MG, Vaswani S, Liu D et al (1998) Prevalence and causes of undernutrition in medical outpatients. Am J Med 104:56–63PubMedCrossRefGoogle Scholar
  85. 85.
    Wilson MG (2002) Undernutrition in medical outpatients. Clin Geriatr Med 18:759–771PubMedCrossRefGoogle Scholar
  86. 86.
    Guigoz Y, Vellas B (1997) The mini nutritional assessment for grading the nutritional state of elderly patients, presentation of the MNA, history and validation. Facts, Research, and Intervention Geriatrics Newsletter. Nutrition 6:2Google Scholar
  87. 87.
    Anonymous (2000) Position of the American Dietetic Association. Nutrition, aging and continuum of care. J Am Diet Assoc 100:580–595CrossRefGoogle Scholar
  88. 88.
    Morley JE (1994) Nutritional assessment is a key component of geriatric assessment. Facts and Research in Gerontology 2:5Google Scholar
  89. 89.
    Ballmer-Weber BK, Drummer R, Kung E et al (1995) Interleukin-2 induced increase of vascular permeability without decrease of the intravascular albumin pool. Br J Cancer 71:78PubMedGoogle Scholar
  90. 90.
    Courtney ME, Greene HL, Folk CC et al (1982) Rapidly declining serum albumin values in newly hospitalized patients: porevalence, severity and contributory factors. J Parenter Enter Nutr 6:143–145CrossRefGoogle Scholar
  91. 91.
    Blaum CS, O’Neill EF, Clements KM et al (1997) The validity of the minimum data set for assessing nutritional status in nursing home residents. Am J Clin Nutr 66:787–794PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Osama QuBaiah
    • 1
  • John E. Morley
    • 1
  1. 1.GRECC,VA Medical Center and Division of Geriatric MedicineSaint Louis UniversitySt. Lou isUSA

Personalised recommendations