Advertisement

Cachexia in Cardiovascular Illness

  • Sabine Strassburg
  • Stefan D. Anker

Abstract

Cachexia (body wasting) in patients with cardio-vascular illness usually develops when patients have chronic heart failure (CHF). As an increasing public health problem and a leading cause of morbidity and mortality worldwide, CHF is associated with a poor prognosis [1]. The onset of cachexia in CHF patients (cardiac cachexia) is a serious complication of their disease and even worsens the prognosis of the underlying disease [2]. This connection between advanced heart failure and significant weight loss has long been recognised. The earliest report dates back to the school of medicine of Hippocrates some 2300 years ago. The term ‘cachexia’ is of Greek origin and derives from the words kakos (bad) and hexis (condition). The term ‘cardiac cachexia’ was first used in 1860 by Mauriac [3].

Keywords

Chronic Heart Failure Chronic Heart Failure Patient Idiopathic Dilate Cardiomyopathy Oral Nutritional Supplement Card Fail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McMurray JJ, Stewart J (2000) Epidemiology, aetiology, and prognosis of heart failure. Heart 833:596–602CrossRefGoogle Scholar
  2. 2.
    Anker SD, Coats AJ (1999) Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 115:836–847PubMedCrossRefGoogle Scholar
  3. 3.
    Doehner W, Anker SD (2002) Cardiac cachexia in early literature: a review of research prior to Medline. Int J Cardiol 85:7–14PubMedCrossRefGoogle Scholar
  4. 4.
    Anker SD, Negassa A, Coats AJ et al (2003) Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361:1077–1083PubMedCrossRefGoogle Scholar
  5. 5.
    Carr JG, Stevenson LW, Waiden JA, Heber D (1989) Prevalence and haemodynamic correlates of malnutrition in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 63:709–713PubMedCrossRefGoogle Scholar
  6. 6.
    McMurray J, Abdullah I, Dargie HJ, Shapiro D (1991) Increased concentrations of tumor necrosis factor in ‘cachectic’ patients with severe chronic heart failure. Br Heart J 66:356–358PubMedCrossRefGoogle Scholar
  7. 7.
    Levine B, Kaiman J, Mayer L et al (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241PubMedCrossRefGoogle Scholar
  8. 8.
    Otaki M (1994) Surgical treatment of patients with cardiac cachexia. An analysis of factors affecting operative mortality. Chest 105:1347–1351PubMedGoogle Scholar
  9. 9.
    Freeman LM, Roubenoff R (1994) The nutrition implications of cardiac cachexia. Nutr Rev 52:340–347PubMedCrossRefGoogle Scholar
  10. 10.
    Cowie MR, Mosterd A, Wood DA et al (1997) The epidemiology of heart failure. Eur Heart J 18:208–225PubMedGoogle Scholar
  11. 11.
    Kannel WB, Ho K, Thorn T (1994) Changing epidemiological features of cardiac failure. Br Heart J 72(Suppl):S3–S9PubMedCrossRefGoogle Scholar
  12. 12.
    Anker SD, Ponikowski P, Varney S et al (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349:1050–1053PubMedCrossRefGoogle Scholar
  13. 13.
    Davos CH, Doehner W, Rauchhaus M et al (2003) Body mass and survival in patients with chronic heart failure without cachexia: the importance of obesity. J Card Fail 9:29–35PubMedCrossRefGoogle Scholar
  14. 14.
    Pittman JG, Cohen P (1964) The pathogenesis of cardiac cachexia. N Engl J Med 271:403–409PubMedCrossRefGoogle Scholar
  15. 15.
    Anker SD, Sharma R (2002) The syndrome of cardiac cachexia. Int J Cardiol 85:51–66PubMedCrossRefGoogle Scholar
  16. 16.
    Harrington D, Anker SD, Chua TP et al (1997) Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol 30:1758–1764PubMedCrossRefGoogle Scholar
  17. 17.
    Anker SD, Swan JW, Volterrani M et al (1997) The influence of muscle mass, strength, fatigability and blood flow on exercise capacity in cachectic and non-cachectic patients with chronic heart failure. Eur Heart J 18:259–269PubMedGoogle Scholar
  18. 18.
    Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18:187–195PubMedCrossRefGoogle Scholar
  19. 19.
    Mancini DM, Walter G, Reichek N et al (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373PubMedGoogle Scholar
  20. 20.
    Drexler H, Riede U, Münzel T et al (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759PubMedGoogle Scholar
  21. 21.
    Anker SD, Clark AL, Teixeira MM et al (1998) Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol 83:612–615CrossRefGoogle Scholar
  22. 22.
    Anker SD, Ponikowski PP, Clark Al et al(1999) Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 20:683–693PubMedCrossRefGoogle Scholar
  23. 23.
    Doehner W, Rauchhaus M, Florea VG et al (2001) Uric acid in cachectic and noncachectic patients with chronic heart failure: relationship to leg vascular resistance. Am Heart J 141:792–799PubMedCrossRefGoogle Scholar
  24. 24.
    Dutka DP, Elborn JS, Delamere F et al (1993) Tumor necrosis factor alpha in severe congestive heart failure. Br Heart J 70:141–143PubMedCrossRefGoogle Scholar
  25. 25.
    Anker SD, Clark AL, Kemp M et al (1997) Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J Am Coll Cardiol 30:997–1001PubMedCrossRefGoogle Scholar
  26. 26.
    Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534PubMedGoogle Scholar
  27. 27.
    Tracey KJ, Morgello S, Koplin B et al (1990) Metabolic effects of cachectin/tumor necrosis factor are modified by site of production: cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute cachexia. J Clin Invest 86:2014–2024PubMedGoogle Scholar
  28. 28.
    Sharma R, Rauchhaus M, Ponikowski PP et al (2000) The relationship of erythrocyte sedimentation rate to inflammatory cytokines and survival in patients with chronic heart failure treated with angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 36:523–528PubMedCrossRefGoogle Scholar
  29. 29.
    Hasper D, Hummel M, Kleber FX et al(1998) Systemic inflammation in patients with heart failure. Eur Heart J 19:761–765PubMedCrossRefGoogle Scholar
  30. 30.
    Torre-Amione G, Kapadia S, Lee J et al (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711PubMedGoogle Scholar
  31. 31.
    Seta Y, Shan K, Bozkurt B et al (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail 3:243–249CrossRefGoogle Scholar
  32. 32.
    Clark AL, Loebe M, Potapov EV et al (2001) Ventricular assist device in severe heart failure: effects on cytokines, complement and body weight. Eur Heart J 22:2275–2283PubMedCrossRefGoogle Scholar
  33. 33.
    Genth-Zotz S, von Haehling S, Bolger AP et al (2002) Pathophysiological quantities of endotoxin induce tumor necrosis factor release in whole blood from patients with chronic heart failure. Am J Cardiol 90:1226–1230PubMedCrossRefGoogle Scholar
  34. 34.
    Anker SD, Egerer KR, Volk HD et al(1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79:1426–1430PubMedCrossRefGoogle Scholar
  35. 35.
    Brunkhorst FM, Clark AL, Forycki ZF, Anker SD (1999) Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. Int J Cardiol 72:3–10PubMedCrossRefGoogle Scholar
  36. 36.
    Vonhof S, Brost B, Stille-Siegener M et al(1998) Monocyte activation in congestive heart failure due to coronary artery disease and idiopathic dilated cardiomyopathy. Int J Cardiol 63:237–244PubMedCrossRefGoogle Scholar
  37. 37.
    Rauchhaus M, Coats AJ, Anker SD (2000) The endo-toxin-lipoprotein hypothesis. Lancet 356:930–933PubMedCrossRefGoogle Scholar
  38. 38.
    Rauchhaus M, Koloczek V, Volk H et al (2000) Inflammatory cytokines and the possible immunological role for lipoproteins in chronic heart failure. Int J Cardiol 76:125–133PubMedCrossRefGoogle Scholar
  39. 39.
    Horwich TB, Hamilton MA, Maclellan WR, Fonarow GC (2002) Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail 8:216–224PubMedCrossRefGoogle Scholar
  40. 40.
    Rauchhaus M, Clark AL, Doehner W et al (2003) The relationship between cholesterol and survival in patients with chronic heart failure. J Am Coll Cardiol 42:1933–1940PubMedCrossRefGoogle Scholar
  41. 41.
    Okonko DO, Anker SD (2004) Anemia in chronic heart failure: pathogenetic mechanisms. J Card Fail 10(1 Suppl):S5–S9PubMedCrossRefGoogle Scholar
  42. 42.
    Goldstein DS (1981) Plasma norepinephrine as an indicator of sympathetic neural activity in clinical cardiology. Am J Cardiol 48:1147–1154PubMedCrossRefGoogle Scholar
  43. 43.
    Lommi J, Kupari M, Yki-Jarvinen H (1998) Free fatty acid kinetics and oxidation in congestive heart failure. Am JCardiol 81:45–50CrossRefGoogle Scholar
  44. 44.
    Bolger AP, Sharma R, Li W et al (2002) Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation 106:92–99PubMedCrossRefGoogle Scholar
  45. 45.
    Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97:2509–2516PubMedGoogle Scholar
  46. 46.
    Staroukine M, Devriendt J, Decoodt P, Verniory A (1984) Relationships between plasma epinephrine, norepinephrine, dopamine and angiotensin II concentrations, renin activity, hemodynamic state and prognosis in acute heart failure. Acta Cardiol 39:131–138PubMedGoogle Scholar
  47. 47.
    Niebauer J, Pflaum CD, Clark AL et al (1998) Deficient insulin-like growth factor I in chronic heart failure predicts altered body composition, anabolic deficiency, cytokine and neurohormonal activation. J Am Coll Cardiol 32:393–397PubMedCrossRefGoogle Scholar
  48. 48.
    Anker SD, Volterrani M, Pflaum CD et al(2001) Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol 38:443–452PubMedCrossRefGoogle Scholar
  49. 49.
    Anand IS, Ferrari R, Kalra GS et al (1989) Edema of cardiac origin. Studies of body water and sodium renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 80:299–305PubMedGoogle Scholar
  50. 50.
    Nicholls MG, Espiner EA, Donald RA, Hughes H (1974) Aldosterone and its regulation during diuresis in patients with gross congestive heart failure. Clin Sci Mol Med 47:301–315PubMedGoogle Scholar
  51. 51.
    Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350PubMedCrossRefGoogle Scholar
  52. 52.
    Witte KK, Clark AL (2002) Nutritional abnormalities contributing to cachexia in chronic illness. Int J Cardiol 85:23–31PubMedCrossRefGoogle Scholar
  53. 53.
    Leyva F, Anker SD, Egerer K et al(1998) Hyperleptinaemia in chronic heart failure. Relationships with insulin. Eur Heart J 19:1547–1551PubMedCrossRefGoogle Scholar
  54. 54.
    Filippatos GS, Tsilias K, Venetsanou K et al (2000) Leptin serum levels in cachectic heart failure patients. Relationship with tumor necrosis factor-alpha system. Int J Cardiol 76:117–122PubMedCrossRefGoogle Scholar
  55. 55.
    Doehner W, Pflaum CD, Rauchhaus M et al (2001) Leptin, insulin sensitivity and growth hormone binding protein in chronic heart failure with and without cardiac cachexia. Eur J Endocrinol 145:727–735PubMedCrossRefGoogle Scholar
  56. 56.
    Sharma R, Coats AJS, Anker SD (2000) The role of inflammatory mediators in chronic heart failure: cytokines nitric oxide, and endothelin-1. Int J Cardiol 72:175–186PubMedCrossRefGoogle Scholar
  57. 57.
    Sigurdsson A, Swedberg K, Ullmann B (1994) Effects of ramipril on the neurohormonal response to exercise in patients with mild or moderate congestive heart failure. Eur Heart J15:247–254PubMedGoogle Scholar
  58. 58.
    Van Veldhuisen DJ, Genth-Zotz S, Brouwer J et al (1998) High-versus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J Am Coll Cardiol 32:1811–1818PubMedCrossRefGoogle Scholar
  59. 59.
    Liu L, Zhao SP (1999) The changes in circulating tumor necrosis factor levels in patients with congestive heart failure influenced by therapy. Int J Cardiol 69:77–82PubMedCrossRefGoogle Scholar
  60. 60.
    Gullestad L, Aukrust P, Ueland T et al (1999) Effect of high-versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 34:2061–2067PubMedCrossRefGoogle Scholar
  61. 61.
    Corbalan R, Acevedo M, Godoy I et al (1998) Enalapril restores depressed circulating insulin-like growth factor 1 in patients with chronic heart failure. J Card Fail 4:115–119PubMedCrossRefGoogle Scholar
  62. 62.
    Tsutamoto T, Wada A, Maeda K et al (2000) Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, inter-leukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 35:714–721PubMedCrossRefGoogle Scholar
  63. 63.
    Coats AJS, Anker SD, Roecker EB et al (2001) Prevention and reversal of cardiac cachexia in patients with severe heart failure by carvedilol: results of the COPERNICUS study. Circulation 104:11–437 (abs)Google Scholar
  64. 64.
    Hryniewicz K, Androne AS, Hudaihed A, Katz SD (2003) Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J Card Fail 9:464–468PubMedCrossRefGoogle Scholar
  65. 65.
    Feuerstein G, Yue TL, Ma X, Ruffulo RR (1998) Novel mechanisms in the treatment of heart failure: inhibition of oxygen radicals and apoptosis by carvedilol. Prog Cardiovasc Dis 41:17–24PubMedCrossRefGoogle Scholar
  66. 66.
    Anonymous (1999) Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353:2001–2007CrossRefGoogle Scholar
  67. 67.
    Packer M, Bristow MR, Cohn JN et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 334:1349–1355PubMedCrossRefGoogle Scholar
  68. 68.
    Goldenburg MM (1999) Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 21:75–87CrossRefGoogle Scholar
  69. 69.
    Moreland LW (1999) Inhibitors of tumor necrosis factor for rheumatoid arthritis. J Rheumatol 26:7–15Google Scholar
  70. 70.
    Present DH, Rutgeerts P, Targan S et al (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340:1398–1405PubMedCrossRefGoogle Scholar
  71. 71.
    Sharma R, Anker SD (2002) Cytokines, apoptosis and cachexia: the potential for TNF antagonism. Int J Cardiol 85:161–171PubMedCrossRefGoogle Scholar
  72. 72.
    Deswal A, Bozkurt B, Seta Y et al (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (enbrel, etanercept) in patients with advanced heart failure. Circulation 99: 3224–3226PubMedGoogle Scholar
  73. 73.
    Fichtischerer S, Rössig L, Breuer S et al (2001) Tumor necrosis factor antagonism with etanercept improves systemic endothelial vasoreactivity in patients with advanced heart failure. Circulation 104:3023–3025CrossRefGoogle Scholar
  74. 74.
    Mann DL, McMurray JJ, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure. Circulation 109:1594–1602PubMedCrossRefGoogle Scholar
  75. 75.
    Chung ES, Packer M, Lo KH et al (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107: 3133–3140PubMedCrossRefGoogle Scholar
  76. 76.
    Anker SD, Coats AJS (2002) How to RECOVER from RENAISSANCE? The significance of the results of RECOVER; RENAISSANCE; RENEWAL and ATTACH. Int J Cardiol 86:123–130PubMedCrossRefGoogle Scholar
  77. 77.
    Matsumori A, Shioi T, Yamada T et al (1994) Vesnarinone, a new inotropic agent, inhibits cytokine production by stimulated human blood from patients with heart failure. Circulation 89:955–958PubMedGoogle Scholar
  78. 78.
    Sliwa K, Skudicky D, Candy G et al (1998) Randomised investigation of effects of pentoxiphylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351:1091–1093PubMedCrossRefGoogle Scholar
  79. 79.
    Skudicky D, Bergmann A, Sliwa K et al (2001) Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation 103:1083–1088PubMedGoogle Scholar
  80. 80.
    Tsujinaka T, Fujita J, Ebisui C et al (1996) Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 97:244–249PubMedCrossRefGoogle Scholar
  81. 81.
    Osterziel KJ, Strohm O, Schuler J et al (1998) Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351:1233–1237PubMedCrossRefGoogle Scholar
  82. 82.
    Cicoira M, Kalra PR, Anker SD(2003) Growth hormone resistance in chronic heart failure and its therapeutic implications. J Card Fail 9:219–226PubMedCrossRefGoogle Scholar
  83. 83.
    Cuneo RC, Wilmshurst P, Lowy C et al (1989) Cardiac failure responding to growth hormone. Lancet 1:838–839PubMedCrossRefGoogle Scholar
  84. 84.
    O’Driscoll JG, Green DJ, Ireland M et al(1997) Treatment of end-stage cardiac failure with growth hormone. Lancet 349:1068CrossRefGoogle Scholar
  85. 85.
    Sharma R, Anker SD (2002) Immune and neurohormonal pathways in chronic heart failure. Congest Heart Fail 8:23–28PubMedCrossRefGoogle Scholar
  86. 86.
    Nagaya N, Kangawa K (2003) Ghrelin improves left ventricular dysfunction and cardiac cachexia in heart failure. Curr Opin Pharmacol 3:146–151PubMedCrossRefGoogle Scholar
  87. 87.
    Nagaya N, Kangawa K (2003) Ghrelin, a novel growth hormone-releasing peptide, in the treatment of chronic heart failure. Regul Peptides 114:71–77CrossRefGoogle Scholar
  88. 88.
    Abel RM, Fischer JE, Buckley MJ et al (1976) Malnutrition in cardiac surgical patients: results of a early postoperative parenteral nutrition. Arch Surg 111:45–50PubMedGoogle Scholar
  89. 89.
    Heymsfield SB, Casper K (1989) Congestive heart failure: clinical management by use of continuous nasoenteric feeding. Am J Clin Nutr 50:539–544PubMedGoogle Scholar
  90. 90.
    Broquist M, Arnquist H, Dahlström U et al(1994) Nutritional assessment and muscle energy metabolism in severe chronic congestive heart failure-effects of longterm dietary supplementation. Eur Heart J 15:1641–1650Google Scholar
  91. 91.
    McGandy RB, Russel RM, Hartz SC et al (1986) Nutritional status survey of healthy non-institutionalized elderly: energy and nutrient intake from three-day diet records and nutrient supplements. Nutr Res 6:785–798CrossRefGoogle Scholar
  92. 92.
    Buck M, Chojkier M(1996) Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 15(8):1753–1765PubMedGoogle Scholar
  93. 93.
    Herbaczynska-Cedro K, Kosiewicz-Wasek B, Cedro K (1995) Supplementation with vitamins C and E suppresses leukocyte oxygen free radical production in patients with myocardial infarction. Eur Heart J 16:1044–1049PubMedGoogle Scholar
  94. 94.
    Belch JJ, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248PubMedCrossRefGoogle Scholar
  95. 95.
    Nishiyama Y, Ikeda H, Haramaki N et al (1998) Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J 135:115–120PubMedCrossRefGoogle Scholar
  96. 96.
    Witte KKA, Clark AL, Cleland JGF (2001) Chronic heart failure and micronutrients. J Am Coll Cardiol 37:1765–1774PubMedCrossRefGoogle Scholar
  97. 97.
    Von Haehling S, Anker SD, Bassenge E (2003) Statins and the role of nitric oxide in chronic heart failure. Heart Fail Rev 8:99–106CrossRefGoogle Scholar
  98. 98.
    Freeman LM, Rush JE, Kehayias JJ et al (1998) Nutritional alterations and the effect of fish oil supplementation in dogs with heart failure. J Vet Intern Med 12:440–448PubMedCrossRefGoogle Scholar
  99. 99.
    Barber MD, Ross JA, Voss AC et al(1999) The effect of an oral nutritional supplement enriched with fish oil on weigth loss in patients with pancreatic cancer. Br J Cancer 81:80–86PubMedCrossRefGoogle Scholar
  100. 100.
    Endres S, Ghorbani R, Kelly VE et al (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of IL-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271PubMedCrossRefGoogle Scholar
  101. 101.
    Kremer JM, Jubiz W, Michalek A et al(1987) Fish-oil fatty acid supplementation in active rheumatoid arthritis: a double-blinded, controlled, crossover study. Ann Intern Med 106:497–503PubMedGoogle Scholar
  102. 102.
    Coats AJ, Adamopoulos S, Meyer TE et al (1990) Effects of physical training in chronic heart failure. Lancet 335:63–66PubMedCrossRefGoogle Scholar
  103. 103.
    Schulze PC, Gielen S, Schuler G, Hambrecht R (2002) Chronic heart failure and skeletal muscle catabolism: effects of exercise training. Int J Cardiol 85:141–149PubMedCrossRefGoogle Scholar
  104. 104.
    Coats AJ, Adamopoulos S, Radaelli A et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Sabine Strassburg
    • 1
  • Stefan D. Anker
    • 2
  1. 1.Applied Cachexia Research, Department of CardiologyCharité, Campus Virchow-KlinikumBerlinGermany
  2. 2.Department of Clinical Cardiology, National Heart and Lung Institute, Imperial College School of Medicine, London, United Kingdom and Department of Cardiology, Division of Applied Cachexia ResearchCharité Medical SchoolBerlinGermany

Personalised recommendations