Advertisement

Gastrointestinal Diseases

  • Hiroyuki Okano

Abstract

The pathophysiology, evaluation, and treatment of malnutrition have been extensively investigated in recent years, and knowledge has accumulated gradually. As a result, it is now well-known that several benign digestive diseases may cause malnutrition. This chapter reviews recent clinical aspects of malnutrition related to common digestive diseases, such as Crohn’s disease, short bowel syndrome, chronic liver diseases, and chronic pancreatitis. In addition, recent progress in nutritional support in the treatment of these diseases is discussed.

Keywords

Inflammatory Bowel Disease Chronic Pancreatitis Chronic Liver Disease Hepatic Encephalopathy Cirrhotic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis JD, Fisher RL (1994) Nutrition support in inflammatory bowel disease. Med Clin North Am 78:1443–1456PubMedGoogle Scholar
  2. 2.
    Zurita VF, Rawls DE, Dyck WP (1995) Nutritional support in inflammatory bowel disease. Dig Dis 13:92–107PubMedGoogle Scholar
  3. 3.
    Geerling BJ, Badart-Smook A, Stockbrugger RW, Brummer RJ (2000) Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur J Clin Nutr 54:514–521PubMedCrossRefGoogle Scholar
  4. 4.
    Charney P (1995) Nutrition assessment in the 1990s: where are we now? Nutr Clin Pract 10:131–139PubMedGoogle Scholar
  5. 5.
    Schneeweiss B, Lochs H, Zauner C et al (1999) Energy and substrate metabolism in patients with active Crohn’s disease. J Nutr 129:844–848PubMedGoogle Scholar
  6. 6.
    Rigaud D, Angel LA, Cerf M et al ( 1994) Mechanisms of decreased food intake during weight loss in adult Crohn’s disease patients without obvious malabsorption. Am J Clin Nutr 60:775–781PubMedGoogle Scholar
  7. 7.
    Bodnar RJ, Pasternak GW, Mann PE et al (1989) Mediation of anorexia by human recombinant tumor necrosis factor through a peripheral action in the rat. Cancer Res 49:6280–6284PubMedGoogle Scholar
  8. 8.
    Hellerstein MK, Meydani SN, Meydani M et al (1989) Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. J Clin Invest 84:228–235PubMedGoogle Scholar
  9. 9.
    Jeejeebhoy KN (2002) Clinical nutrition: 6. Management of nutritional problems of patients with Crohn’s disease. CMAJ 166:913–918PubMedGoogle Scholar
  10. 10.
    Sarraf P, Frederich RC, Turner EM et al (1997) Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 185:171–175PubMedCrossRefGoogle Scholar
  11. 11.
    Grunfeld C, Zhao C, Fuller J et al (1996) Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 97:2152–2157PubMedGoogle Scholar
  12. 12.
    Finck BN, Kelley KW, Dantzer R et al (1998) In vivo and in vitro evidence for the involvement of tumor necrosis factor-alpha in the induction of leptin by lipopolysaccharide. Endocrinology 139:2278–2283PubMedCrossRefGoogle Scholar
  13. 13.
    Lanfranchi GA, Brignola C, Campieri M et al (1984) Assessment of nutritional status in Crohn’s disease in remission or low activity. Hepatogastroenterology 31:129–132PubMedGoogle Scholar
  14. 14.
    Geerling BJ, Badart-Smook A, Stockbrugger RW, Brummer RJ (1998) Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am J Clin Nutr 67:919–926PubMedGoogle Scholar
  15. 15.
    Royall D, Greenberg GR, Allard JP et al (1995) Total enterai nutrition support improves body composition of patients with active Crohn’s disease. JPEN 19:95–99Google Scholar
  16. 16.
    Chan AT, Fleming CR, O’Fallon WM, Huizenga KA (1986) Estimated versus measured basal energy requirements in patients with Crohn’s disease. Gastroenterology 91:75–78PubMedGoogle Scholar
  17. 17.
    Stokes MA, Hill GL (1993) Total energy expenditure in patients with Crohn’s disease: measurement by the combined body scan technique. JPEN 17: 3–7Google Scholar
  18. 18.
    Baker JP, Detsky AS, Wesson DE et al (1982) Nutritional assessment: a comparison of clinical judgement and objective measurements. N Engl J Med 306:969–972PubMedCrossRefGoogle Scholar
  19. 19.
    Detsky AS, McLaughlin JR, Baker JP et al (1987) What is subjective global assessment of nutritional status? JPEN 11:8–13Google Scholar
  20. 20.
    Song HK, Buzby GP (2001) Nutritional support for Crohn’s disease. Surg Clin North Am 81:103–115PubMedCrossRefGoogle Scholar
  21. 21.
    Loew D, Wanitschke R, Schroedter A (1999) Studies on vitamin B12 status in the elderly-prophylactic and therapeutic consequences. Int J Vitam Nutr Res 69:228–233PubMedCrossRefGoogle Scholar
  22. 22.
    Hoffbrand AV, Stewart JS, Booth CC, Mollin DL (1968) Folate deficiency in Crohn’s disease: incidence, pathogenesis, and treatment. Br Med J 2:71–75PubMedGoogle Scholar
  23. 23.
    Silvennoinen J (1996) Relationships between vitamin D, parathyroid hormone and bone mineral density in inflammatory bowel disease. J Intern Med 239:131–137PubMedCrossRefGoogle Scholar
  24. 24.
    Scharia SH, Minne HW, Lempert UG et al (1994) Bone mineral density and calcium regulating hormones in patients with inflammatory bowel disease (Crohn’s disease and ulcerative colitis). Exp Clin Endocrinol 102:44–49CrossRefGoogle Scholar
  25. 25.
    Murch SH, Lamkin VA, Savage MO et al (1991) Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut 32:913–917PubMedCrossRefGoogle Scholar
  26. 26.
    Bernstein CN, Seeger LL, Sayre JW et al (1995) Decreased bone density in inflammatory bowel disease is related to corticosteroid use and not disease diagnosis. J Bone Miner Res 10:250–256PubMedCrossRefGoogle Scholar
  27. 27.
    Hendricks KM, Walker WA (1988) Zinc deficiency in inflammatory bowel disease. Nutr Rev 46:401–408PubMedCrossRefGoogle Scholar
  28. 28.
    Tiomny E, Horwitz C, Graff E et al (1982) Serum zinc and taste acuity in Tel-Aviv patients with inflammatory bowel disease. Am J Gastroenterol 77:101–104PubMedGoogle Scholar
  29. 29.
    Nielsen OH, Ahnfelt-Ronne I (1991) Involvement of oxygen-derived free radicals in the pathogenesis of chronic inflammatory bowel disease. Klin Wochenschr 69:995–1000PubMedCrossRefGoogle Scholar
  30. 30.
    McKenzie SJ, Baker MS, Buffinton GD, Doe WF (1996) Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Invest 98:136–141PubMedCrossRefGoogle Scholar
  31. 31.
    Grisham MB (1994) Oxidants and free radicals in inflammatory bowel disease. Lancet 344:859–861PubMedCrossRefGoogle Scholar
  32. 32.
    Di Mascio P, Murphy ME, Sies H (1991) Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 53:194S–200SPubMedGoogle Scholar
  33. 33.
    Fernandez-Banares F, Cabre E, Esteve-Comas M, Gassull MA (1995) How effective is enterai nutrition in inducing clinical remission in active Crohn’s disease? A meta-analysis of the randomized clinical trials. JPEN 19:356–364Google Scholar
  34. 34.
    Griffiths AM, Ohlsson A, Sherman PM, Sutherland LR (1995) Meta-analysis of enterai nutrition as a primary treatment of active Crohn’s disease. Gastroenterology 108:1056–1067PubMedCrossRefGoogle Scholar
  35. 35.
    Silk DB, Payne-James J (1989) Inflammatory bowel disease: nutritional implications and treatment. Proc Nutr Soc 48:355–361PubMedCrossRefGoogle Scholar
  36. 36.
    O’Morain C, Segal AW, Levi AJ (1984) Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial. Br Med J (Clin Res Ed) 288:1859–1862Google Scholar
  37. 37.
    Harries AD, Jones LA, Danis V et al (1983) Controlled trial of supplemented oral nutrition in Crohn’s disease. Lancet 1:887–890PubMedCrossRefGoogle Scholar
  38. 38.
    Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract. JPEN J Parenter Enterai Nutr 9:608–617Google Scholar
  39. 39.
    Wyatt J, Vogelsang H, Hubl W et al (1993) Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet 341:1437–1439PubMedCrossRefGoogle Scholar
  40. 40.
    Vanderhoof JA, Langnas AN (1997) Short-bowel syndrome in children and adults. Gastroenterology 113:1767–1778PubMedCrossRefGoogle Scholar
  41. 41.
    Solhaug JH, Tvete S (1978) Adaptive changes in the small intestine following bypass operation for obesity. Scand J Gastroenterol 13:401–408PubMedGoogle Scholar
  42. 42.
    Doldi SB (1991) Intestinal adaptation following jejuno-ileal bypass. Clin Nutr 10:138–145PubMedCrossRefGoogle Scholar
  43. 43.
    Dowling RH, Booth CC (1966) Functional compensation after small-bowel resection in man. Lancet 2:146–147PubMedGoogle Scholar
  44. 44.
    Weinstein LD, Shoemaker CP, Hersh T, Wright HK (1968) Enhanced intestinal absorption after small bowel resection in man. Arch Surg 99:560–561Google Scholar
  45. 45.
    Sham J, Martin G, Meddings JB, Sigalet DL (2002) Epidermal growth factor improves nutritional outcome in a rat model of short bowel syndrome. J Pediatr Surg 37:765–769PubMedCrossRefGoogle Scholar
  46. 46.
    Jeppesen PB, Hartmann B, Thulesen J et al (2000) Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with a preserved colon. Gut 47:370–376PubMedCrossRefGoogle Scholar
  47. 47.
    Jeppesen PB, Hartmann B, Thulesen J et al (2001) Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology 120:806–815PubMedCrossRefGoogle Scholar
  48. 48.
    Welters CF, Dejong CH, Deutz NE, Heineman E (2001) Intestinal function and metabolism in the early adaptive phase after massive small bowel resection in the rat. J Pediatr Surg 36:1746–1751PubMedCrossRefGoogle Scholar
  49. 49.
    Schiller LR (2001) Diarrhea following small bowel resection. In: Bayless TM, Hanauer SB (ed) Advanced Therapy of Inflammatory Bowel Disease. BC Decker, Hamilton, pp 471–474Google Scholar
  50. 50.
    Stollman NH, Neustater BR, Rogers AI (1996) Shortbowel syndrome. Gastroenterologist 4:118–128PubMedGoogle Scholar
  51. 51.
    Shanbhogue LK, Molenaar JC (1994) Short bowel syndrome: metabolic and surgical management. Br J Surg 81:486–499PubMedCrossRefGoogle Scholar
  52. 52.
    Weser E (1976) The management of patients after small bowel resection. Gastroenterology 71:146–150Google Scholar
  53. 53.
    Edes TE (1990) Clinical management of short-bowel syndrome. Enhancing the patient’s quality of life. Postgrad Med 88:91–95PubMedGoogle Scholar
  54. 54.
    Buchman AL, Scolapio J, Fryer J (2003) AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology 124:1111–1134PubMedGoogle Scholar
  55. 55.
    Thuluvath PJ, Triger DR (1994) Evaluation of nutritional status by using anthropometry in adults with alcoholic and nonalcoholic liver disease. Am J Clin Nutr 60:269–273PubMedGoogle Scholar
  56. 56.
    Caregaro L, Alberino F, Amodio P et al (1996) Malnutrition in alcoholic and virus-related cirrhosis. Am J Clin Nutr 63:602–609PubMedGoogle Scholar
  57. 57.
    Mendenhall C, Roselle GA, Gartside P, Moritz T (1995) Relationship of protein calorie malnutrition to alcoholic liver disease: a reexamination of data from two Veterans Administration Cooperative Studies. Alcohol Clin Exp Res 19:635–641PubMedCrossRefGoogle Scholar
  58. 58.
    Dudrick SJ, Latifi R, Fosnoch De F (1991) Management of the short-bowel syndrome. Surg Clin North Am 71:625–643PubMedGoogle Scholar
  59. 59.
    Merli M, Nicolini G, Angeloni S, Riggio O (2002) Malnutrition is a risk factor in cirrhotic patients undergoing surgery. Nutrition 18:978–986PubMedCrossRefGoogle Scholar
  60. 60.
    McCullough AJ, Glamour T (1993) Differences in amino acid kinetics in cirrhosis. Gastroenterology 104:1858–1865PubMedGoogle Scholar
  61. 61.
    Shanbhogue RL, Bistrian BR, Jenkins RL et al (1987) Resting energy expenditure in patients with endstage liver disease and in normal population. JPEN 113:305–308Google Scholar
  62. 62.
    Muller MJ, Lautz HU, Plogmann B et al (1992) Energy expenditure and substrate oxidation in patients with cirrhosis: the impact of cause, clinical staging and nutritional state. Hepatology 15:782–794PubMedCrossRefGoogle Scholar
  63. 63.
    Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: fundamental aspects. Int J Obes Relat Metab Disord 23:22–28PubMedCrossRefGoogle Scholar
  64. 64.
    McCullough AJ, Bugianesi E, Marchesini G, Kalhan SC (1998) Gender-dependent alterations in serum leptin in alcoholic cirrhosis. Gastroenterology 115:947–953PubMedCrossRefGoogle Scholar
  65. 65.
    Henriksen JH, Holst JJ, Moller S et al (1999) Increased circulating leptin in alcoholic cirrhosis: relation to release and disposal. Hepatology 29:1818–1824PubMedCrossRefGoogle Scholar
  66. 66.
    Ockenga J, Bischoff SC, Tillmann HL et al (2000) Elevated bound leptin correlates with energy expenditure in cirrhotics. Gastroenterology 119:1656–1662PubMedCrossRefGoogle Scholar
  67. 67.
    Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  68. 68.
    Tacke F, Brabant G, Kruck E et al (2003) Ghrelin in chronic liver disease. J Hepatol 38:447–454PubMedCrossRefGoogle Scholar
  69. 69.
    Toshinai K, Mondai MS, Nakazato M et al (2001) Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 281:1220–1225PubMedCrossRefGoogle Scholar
  70. 70.
    Merli M, Eriksson LS, Hagenfeldt L, Wahren J (1986) Splanchnic and leg exchange of free fatty acids in patients with liver cirrhosis. J Hepatol 3:348–355PubMedCrossRefGoogle Scholar
  71. 71.
    Riggio O, Merli M, Leonetti F et al (1997) Impaired nonoxidative glucose metabolism in patients with liver cirrhosis: effects of two insulin doses. Metabolism 46:840–843PubMedCrossRefGoogle Scholar
  72. 72.
    Cabre E, Gassull MA (1993) Nutritional aspects of chronic liver disease. Clin Nutr 12:S52–S63CrossRefGoogle Scholar
  73. 73.
    McClain CJ, Marsano L, Burk RF, Bacon B (1991) Trace metals in liver disease. Semin Liver Dis 11:321–339PubMedCrossRefGoogle Scholar
  74. 74.
    Van der Rijt CC, Schalm SW, Schat H et al (1991) Overt hepatic encephalopathy precipitated by zinc deficiency. Gastroenterology 100:1114–1118PubMedGoogle Scholar
  75. 75.
    Newsome PN, Beldon I, Moussa Y et al (2000) Low serum retinol levels are associated with hepatocellular carcinoma in patients with chronic liver disease. Aliment Pharmacol Ther 14:1295–1301PubMedCrossRefGoogle Scholar
  76. 76.
    Latifi R, Killam RW, Dudrick SJ (1991) Nutritional support in liver failure. Surg Clin North Am 71:567–578PubMedGoogle Scholar
  77. 77.
    Dudrick SJ, Kavic SM (2002) Hepatobiliary nutrition: history and future. J Hepatobiliary Pancreat Surg 9:459–468PubMedCrossRefGoogle Scholar
  78. 78.
    Teran JC, McCullough AJ (2001) Nutrition in liver diseases. In: Gottschlich MM (ed) The science and practice of nutrition support. A case-based core curriculum. Kendall/Hunt, Dubuque, pp 539–552Google Scholar
  79. 79.
    Inui A (2002) Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin 52:72–91PubMedGoogle Scholar
  80. 80.
    Koretz RL, Lipman TO, Klein S (2001) American Gastroenterological Association. AGA technical review on parenteral nutrition. Gastroenterology 121:970–1001PubMedGoogle Scholar
  81. 81.
    Etemad B, Whitcomb DC (2001) Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology 120:682–707PubMedCrossRefGoogle Scholar
  82. 82.
    Layer P, Yamamoto H, Kalthoff L et al (1994) The different courses of earlyand late-onset idiopathic and alcoholic chronic pancreatitis. Gastroenterology 107:1481–1487PubMedGoogle Scholar
  83. 83.
    Testoni PA, Tittobello A (1997) Endoscopy in pancreatic disease: diagnosis and therapy. Masby, Chicago, p 100Google Scholar
  84. 84.
    Apte MV, Keogh GW, Wilson JS (1999) Chronic pancreatitis: complications and management. J Clin Gastroenterol 29:225–240PubMedCrossRefGoogle Scholar
  85. 85.
    Hebuterne X, Hastier P, Peroux JL et al (1996) Resting energy expenditure in patients with alcoholic chronic pancreatitis. Dig Dis Sci 41:533–539PubMedCrossRefGoogle Scholar
  86. 86.
    Kumar A, Forsmark CE, Toskes PP (1996 ) Small bowel bacterial overgrowth: The changing face of an old disease. Gastroenterology 110:A340 (abs)Google Scholar
  87. 87.
    Raue G, Keim V (1999) Secondary diabetes in chronic pancreatitis. Z Gastroenterol. 1:4–9PubMedGoogle Scholar
  88. 88.
    Twersky Y, Bank S (1989) Nutritional deficiencies in chronic pancreatitis. Gastroenterol Clin North Am 18:543–565PubMedGoogle Scholar
  89. 89.
    Scolapio JS, Malhi-Chowla N, Ukleja A (1999) Nutrition supplementation in patients with acute and chronic pancreatitis. Gastroenterol Clin North Am 28:695–707PubMedCrossRefGoogle Scholar
  90. 90.
    Haaber AB, Rosenfalck AM, Hansen B et al (2000) Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency. Int J Pancreatol 27:21–27PubMedGoogle Scholar
  91. 91.
    Quilliot D, Dousset B, Guerci B et al (2001) Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas 22:299–306PubMedCrossRefGoogle Scholar
  92. 92.
    Trolli PA, Conwell DL, Zuccaro GJr (2001) Pancreatic enzyme therapy and nutritional status of outpatients with chronic pancreatitis. Gastroenterol Nurs 24:84–87PubMedCrossRefGoogle Scholar
  93. 93.
    Pitchumoni CS (1998) Chronic pancreatitis: pathogenesis and management of pain. J Clin Gastroenterol 27:101–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Hiroyuki Okano
    • 1
  1. 1.Department of Internal and Geriatric MedicineKobe UniversityKobeJapan

Personalised recommendations