Energy is constantly required in human life, whereas it is supplied only by intermittent food intake. Therefore, food is usually ingested in excess of the immediate caloric needs, and the extra calories are stored in the form of hepatic and muscle glycogen, adipose tissue triglycerides, and to a certain extent as muscle protein. In turn, these fuel reservoirs are broken down during starvation to provide energy for the body. The amount of glycogen stored in skeletal muscle is about 400 g (1600 Kcal), the amount of glycogen in liver is about 75 g (300 Kcal), and the amount of triglycérides stored in adipose tissue is about 15 000 g (141 000 Kcal), at overnight fasting state in healthy men.


Rest Metabolic Rate Insulin Deficiency Diabetic Gastroparesis Basal Energy Expenditure Tropical Calcific Pancreatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chipkin SR, Kelly KL, Ruderman NB (1994) Hormone-fuel interrelationships: fed state, starvation, and diabetes mellitus. In: Kahn CR, Weir GC (ed) Joslin’s Diabetes Mellitus 13th ed. Lea & Febiger, Malvern, Pennsylvania, pp 97–115Google Scholar
  2. 2.
    Petersen KF, Laurent D, Rothman DL et al (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101:1203–1209PubMedGoogle Scholar
  3. 3.
    Liu Z, Gardner LB, Barrett EJ (1993) Insulin and glucose suppress hepatic glycogenolysis by distinct enzymatic mechanisms. Metabolism 42:1546–1551PubMedCrossRefGoogle Scholar
  4. 4.
    Bonadonna RC, Groop LC, Zych K et al (1990) Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. Am J Physiol 259:E736–E750PubMedGoogle Scholar
  5. 5.
    Alberti KGMM, Zimmet PZ for the WHO Consultation (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. DiabetMed 15:539–553Google Scholar
  6. 6.
    Defronzo RA, Ferrannini E (1991) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194PubMedCrossRefGoogle Scholar
  7. 7.
    Nair KS, Halliday D, Garrow JS (1984) Increased energy expenditure in poorly controlled type 1 (insulin-dependent) diabetic patients. Diabetologia 27:13–16PubMedCrossRefGoogle Scholar
  8. 8.
    Bogardus C, Taskinen MR, Zawadzki J et al (1986) Increased resting metabolic rates in obese subjects with non-insulin-dependent diabetes mellitus and the effect of sulfonylurea therapy. Diabetes 35:1–5PubMedCrossRefGoogle Scholar
  9. 9.
    Fontvieille AM, Lillioja S, Ferraro RT et al (1992) Twenty-four-hour energy expenditure in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35:753–759PubMedGoogle Scholar
  10. 10.
    De Fronzo RA (1988) The triumvirate: α-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 37:667–683Google Scholar
  11. 11.
    Consoli A, Nurjhan N, Capani F, Gerich J (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557PubMedCrossRefGoogle Scholar
  12. 12.
    Ruderman NC, Toews JD, Shafrir E (1969) Role of free fatty acids in glucose homeostasis. Arch Intern Med 123:299–313PubMedCrossRefGoogle Scholar
  13. 13.
    Ravussin E, Bogardus C, Schwartz RS et al (1983) Thermic effect of glucose and insulin infusion in man. J Clin Invest 72:893–902PubMedGoogle Scholar
  14. 14.
    Franssila-Kallunki A, Groop L (1992) Factors associated with basal metabolic rate in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35:962–966PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Z, Long W, Hillier T et al (1999) Insulin regulation of protein metabolism in vivo. Diab Nutr Metab 12:420–428Google Scholar
  16. 16.
    Jefferson LS (1980) Role of insulin in the regulation of protein synthesis. Diabetes 29:487–496PubMedGoogle Scholar
  17. 17.
    Rodriguez T, Alvarez B, Busquets S et al (1997) The increased skeletal muscle protein turnover of the streptozotocin diabetic rat is associated with high concentrations of branched-chain amino acids. Biochem Mol Med 61:87–94PubMedCrossRefGoogle Scholar
  18. 18.
    Robert JJ, Beaufrere B, Koziet J (1985) Whole-body de novo amino acid synthesis in type 1 (insulin-dependent) diabetes studied with stable isotope labelled leucine, alanine, and glycine. Diabetes 34:67–73PubMedCrossRefGoogle Scholar
  19. 19.
    Nair KS, Garrow JS, Ford C et al (1983) Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia 25:400–403PubMedCrossRefGoogle Scholar
  20. 20.
    Umpleby AM, Boroujerdi MA, Brown PM et al (1986) The effect of metabolic control on leucine metabolism in type 1 (insulin-dependent) diabetic patients. Diabetologia 29:131–141PubMedCrossRefGoogle Scholar
  21. 21.
    Luzi L, Castellino P, Simonson DC et al (1990) Leucine metabolism in IDDM. Role of insulin and substrate availability. Diabetes 39:38–48PubMedCrossRefGoogle Scholar
  22. 22.
    Tessari P, Pehling G, Nissen SL et al (1988) Regulation of whole-body leucine metabolism with insulin during mixed meal absorption in normal and diabetic humans. Diabetes 37:512–519PubMedCrossRefGoogle Scholar
  23. 23.
    Pacy PJ, Nair KS, Ford C, Halliday D (1989) Failure of insulin infusion to stimulate fractional muscle protein synthesis in type 1 diabetic patients. Diabetes 38:618–624PubMedCrossRefGoogle Scholar
  24. 24.
    Bennet WM, Connacher AA, Smith K et al (1990) Inability to stimulate skeletal muscle or whole body protein synthesis in type 1 (insulin-dependent) diabetic patients by insulin-plus-glucose during amino acid infusion: studies of incorporation and turnover of tracer L-[1-13C] leucine. Diabetologia 33:43–51PubMedCrossRefGoogle Scholar
  25. 25.
    Nair KS, Ford C, Ekberg K et al (1995) Protein dynamics in whole body and in splanchnic and leg tissues in type 1 diabetic patients. J Clin Invest 95:2926–2937PubMedGoogle Scholar
  26. 26.
    De Feo P, Gan Gaisano M, Haymond MW (1991) Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J Clin Invest 88:833–840PubMedCrossRefGoogle Scholar
  27. 27.
    De Feo P, Volpi E, Lucidi P et al (1993) Physiological increments in plasma insulin concentration have selective and different effects on synthesis of hepatic proteins in normal humans. Diabetes 42:995–1002PubMedCrossRefGoogle Scholar
  28. 28.
    Luzi L, Petrides AS, DeFronzo RA (1993) Different sensitivity of glucose and amino acid metabolism to insulin in NIDDM. Diabetes 42:1868–1877PubMedCrossRefGoogle Scholar
  29. 29.
    Staten MA, Matthews DE, Bier DM (1986) Leucine metabolism in type II diabetes mellitus. Diabetes 35:1249–1253PubMedCrossRefGoogle Scholar
  30. 30.
    Gougeon R, Pencharz PB, Marliss EB (1994) Effect of NIDDM on the kinetics of whole-body protein metabolism. Diabetes 43:318–328PubMedCrossRefGoogle Scholar
  31. 31.
    Gougeon R, Styhler K, Morais JA et al (2000) Effect of oral hypoglycemic agents and diet on protein metabolism in type 2 diabetes. Diabetes Care 23:1–8PubMedCrossRefGoogle Scholar
  32. 32.
    Hugh-Jones P (1955) Diabetes in Jamaica. Lancet 269:891–897PubMedCrossRefGoogle Scholar
  33. 33.
    Yajnik CS, Shelgikar KM, Sahasrabudhe RA et al (1990) The spectrum of pancreatic exocrine and endocrine (beta-cell) function in tropical calcific pancreatitis. Diabetologia 33:417–421PubMedCrossRefGoogle Scholar
  34. 34.
    Dube MP, Johnson DL, Currier JS, Leedom JM (1997) Protease inhibitor-associated hyperglycemia. Lancet 350:713–714PubMedCrossRefGoogle Scholar
  35. 35.
    Garg A (2004) Acquired and inherited lipodystrophies. N Engl J Med 350:1220–1234PubMedCrossRefGoogle Scholar
  36. 36.
    Oral EA, Simha V, Ruiz E, et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578PubMedCrossRefGoogle Scholar
  37. 37.
    Petersen KF, Oral EA, Dufour S et al (2002) Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 109:1345–1350PubMedCrossRefGoogle Scholar
  38. 38.
    Simha V, Szczepaniak LS, Wagner AJ et al (2003) Effect of leptin replacement on intrahepatic and intramyocellular lipid content in patients with generalized lipodystrophy. Diabetes Care 26:30–35PubMedCrossRefGoogle Scholar
  39. 39.
    Snape WJ Jr, Battle WM, Schwartz SS et al (1982) Metoclopramide to treat gastroparesis due to diabetes mellitus: a double-blind controlled trial. Ann Intern Med 96:444–446PubMedGoogle Scholar
  40. 40.
    Heer M, Muller-Duysing W, Benes I et al (1983) Diabetic gastroparesis: treatment with domperidone-a double-blind placebo-controlled trial. Digestion. 27:214–217PubMedCrossRefGoogle Scholar
  41. 41.
    Horowitz M, Roberts AP (1990) Long-term efficacy of cisapride in diabetic gastroparesis. Am J Med 88:195–196PubMedCrossRefGoogle Scholar
  42. 42.
    Itoh Z, Nakaya M, Suzuki T et al (1984) Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am J Physiol 247:G688–G694PubMedGoogle Scholar
  43. 43.
    Okano H, Inui A, Ueno N et al (1996) EM523L, a nonpeptide motilin agonist, stimulates gastric emptying and pancreatic polypeptide secretion. Peptide 17:895–900CrossRefGoogle Scholar
  44. 44.
    Ogbonnaya KI, Arem R (1990) Diabetic diarrhea. Arch Intern Med 150:262–267PubMedCrossRefGoogle Scholar
  45. 45.
    Ellenberg M (1974) Diabetic neuropathic cachexia. Diabetes 23:418–423PubMedGoogle Scholar
  46. 46.
    Archer AG, Watkins PJ, Thomas PK et al (1983) The natural history of acute painful neuropathy in diabetes mellitus. J Neurol Neurosurg Psychiatry 46:491–499PubMedGoogle Scholar
  47. 47.
    Blau RH (1983) Diabetic neuropathic cachexia. Report of a women with this syndrome and review of the literature. Arch Intern Med 143:2011–2012PubMedCrossRefGoogle Scholar
  48. 48.
    Godil A, Berriman D, Knapik S et al (1996) Diabetic neuropathic cachexia. West J Med 165:382–385PubMedGoogle Scholar
  49. 49.
    Weintrob N, Josefsberg Z, Galazer A et al (1997) Acute painful neuropathic cachexia in a young type 1 diabetic woman. Diabetes Care 20:290–291PubMedGoogle Scholar
  50. 50.
    Yuen KCJ, Day JL, Flannagan DW, Rayman G (2001) Diabetic neuropathic cachexia and acute bilateral cataract formation following rapid glycaemic control in a newly diagnosed type 1 diabetic patient. DiabetMed 18:854–857Google Scholar
  51. 51.
    Jackson CE, Barohn RJ (1998) Diabetic neuropathic cachexia: report of a recurrent case. J Neurol Neurosurg Psych 64:785–787Google Scholar
  52. 52.
    Gade GN, Hofeldt FD, Treece GL (1980) Diabetic neuropathic cachexia. Benefical response to combination therapy with amitriptyline and fluphenazine. JAMA 243:1160–1161PubMedCrossRefGoogle Scholar
  53. 53.
    D’Costa DF, Price DE, Burden AC (1992) Diabetic neuropathic cachexia associated with malabsorption. Diabet Med 9:203–205CrossRefGoogle Scholar
  54. 54.
    Van Heel DA, Levitt NS, Winter TA (1998) Diabetic neuropathic cachexia: the importance of positive recognition and early nutritional support. Int J Clin Pract 52:591–592PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Takeshi Ohara
    • 1
  1. 1.Department of Clinical Molecular Medicine,Division of Diabetes and Digestive and Kidney DiseasesKobe University Graduate School of MedicineKobeJapan

Personalised recommendations