Skip to main content

Body Weight Regulation and Hypothalamic Neuropeptides

  • Chapter
Cachexia and Wasting: A Modern Approach

Abstract

The epidemic increasing incidence and prevalence of obesity and diabetes mellitus have underlined the necessity of understanding the regulation and control of appetite and energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edholm OG (1977) Energy balance in man: studies carried out by the Division of Human Physiology, National Institute for Medical Research. J Hum Nutr 31:413–431

    PubMed  CAS  Google Scholar 

  2. Neary NM, Goldstone AP, Bloom SR (2004) Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol 60:153–160

    Article  Google Scholar 

  3. Allen YS, Adrian TE, Allen JM et al (1983) Neuropeptide Y distribution in the rat brain. Science 221:877–879

    Article  PubMed  CAS  Google Scholar 

  4. Schwartz MW, Seeley RJ, Campfield LA et al (1996) Identification of targets of leptin action in rat hypo-thalamus. J Clin Invest 98:1101–1106

    PubMed  CAS  Google Scholar 

  5. McDonald JK, Lumpkin MD, Samson WK et al (1985) Neuropeptide Y affects secretion of luteinising hormone and growth hormone in ovariectomised rats. Proc Natl Acad Sci USA 82:561–564

    Article  PubMed  CAS  Google Scholar 

  6. Qian S, Chen H, Weingarth D et al (2002) Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22:5027–5035

    Article  PubMed  CAS  Google Scholar 

  7. Wilding JP (2002) Neuropeptides and appetite control. Diabet Med 19:619–627

    Article  PubMed  CAS  Google Scholar 

  8. Schaffhauser AO, Stricker-Krongrad A, Brunner L et al (1997) Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides. Diabetes 46:1792–1798

    Article  PubMed  CAS  Google Scholar 

  9. Sawchenko PE, Pfeiffer SW (1988) Ultrastructural localisation of neuropeptide Y and galanin immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Res 474:231–245

    Article  PubMed  CAS  Google Scholar 

  10. Wynne K, Stanley S, McGowan B et al (2005) Appetite control. J Endocrinol 184:291–318

    Article  PubMed  CAS  Google Scholar 

  11. Small CJ, Kim MS, Stanley SA et al (2001) Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 50:248–254

    Article  PubMed  CAS  Google Scholar 

  12. Kalra SP, Dube MG, Pu S et al (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  13. Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  PubMed  CAS  Google Scholar 

  14. van der Lely AJ, Tschop M, Heiman ML et al (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25:426–457

    Article  PubMed  CAS  Google Scholar 

  15. Konturek SJ, Konturek JW, Pawlik T et al (2004) Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 55:137–154

    PubMed  CAS  Google Scholar 

  16. Yang YK, Harmon CM (2003) Recent developments in our understanding of melanocortin system in the regulation of food intake. Obes Rev 4:239–248

    Article  PubMed  CAS  Google Scholar 

  17. Ollmann MM, Wilson BD, Yang YK et al (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138

    Article  PubMed  CAS  Google Scholar 

  18. Yaswen L, Diehl N, Brennan MB et al (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070

    Article  PubMed  CAS  Google Scholar 

  19. Marsh DJ, Hollopeter G, Huszar D et al (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21:119–122

    Article  PubMed  CAS  Google Scholar 

  20. Fehm HL, Smolnik R, Kern W et al (2001) The melanocortin melanocyte-stimulating hormone/adreno-corticotropin(4-10) decreases body fat in humans. J Clin Endocrinol Metab 86:1144–1148

    Article  PubMed  CAS  Google Scholar 

  21. Wank SA, Pisegna JR, de Weerth A (1992) Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc Natl Acad Sci USA 15(89):8691–8695

    Article  Google Scholar 

  22. Cupples WA (2003) Regulating food intake. Am J Physiol Regul Integr Comp Physiol 284:R652–R654

    PubMed  CAS  Google Scholar 

  23. Richardson RD, Omachi K, Kermani R et al (2002) Intraventricular insulin potentiates the anorexic effect of corticotropin releasing hormone in rats. Am J Physiol Regul Integr Comp Physiol 283:R1321–R1326

    PubMed  CAS  Google Scholar 

  24. Ivanov TR, Le Rouzic P, Stanley PJ et al (2004) Neuromedin U neurones in the rat nucleus of the tractus solitarius are catecholaminergic and respond to peripheral cholecystokinin. J Neuroendocrinol 16:612–619

    Article  PubMed  CAS  Google Scholar 

  25. Thompson EL, Murphy KG, Todd JF et al (2004) Chronic administration of NMU into the paraventricular nucleus stimulates the HPA axis but does not influence food intake or body weight. Biochem Biophys Res Commun 323:65–71

    Article  PubMed  CAS  Google Scholar 

  26. Wren AM, Small CJ, Abbott CR et al (2002) Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234

    Article  PubMed  CAS  Google Scholar 

  27. Hanada R, Teranishi H, Pearson JT et al (2004) Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med 10:1067–1073

    Article  PubMed  CAS  Google Scholar 

  28. Nagle DL, McGrail SH, Vitale J et al (1999) The mahogany protein is a receptor involved in suppression of obesity. Nature 398:148–152

    Article  PubMed  CAS  Google Scholar 

  29. Gunn TM, Miller KA, He L et al (1999) The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 398:152–156

    Article  PubMed  CAS  Google Scholar 

  30. Rapraeger AC, Ott VL (1998) Molecular interactions of the syndecan core proteins. Curr Opin Cell Biol 10:620–628

    Article  PubMed  CAS  Google Scholar 

  31. Reizes O, Lincecum J, Wang Z et al (2001) Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 106:105–116

    Article  PubMed  CAS  Google Scholar 

  32. Hellstrom PM, Geliebter A, Naslund E et al (2004) Peripheral and central signals in the control of eating in normal, obese and binge-eating human subjects. Br J Nutr 92:S47–S57

    Article  PubMed  CAS  Google Scholar 

  33. Ouedraogo R, Naslund E, Kirchgessner AL (2003) Glucose regulates the release of orexin-a from the endocrine pancreas. Diabetes 52:111–117

    Article  PubMed  CAS  Google Scholar 

  34. Adam JA, Menheere PP, van Dielen FM et al (2002) Decreased plasma orexin-A levels in obese individuals. Int J Obes Relat Metab Disord 26:274–276

    Article  PubMed  CAS  Google Scholar 

  35. Samson WK, Taylor MM (2001) Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am J Physiol Regul Integr Comp Physiol 281:R1140–R1145

    PubMed  CAS  Google Scholar 

  36. Wang C, Kotz CM (2002) Urocortin in the lateral septal area modulates feeding induced by orexin A in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 283:R358–R367

    PubMed  CAS  Google Scholar 

  37. Lambert PD, Wilding JP, al-Dokhayel AA et al (1993) The effect of central blockade of kappa-opioid receptors on neuropeptide Y-induced feeding in the rat. Brain Res 629:146–148

    Article  PubMed  CAS  Google Scholar 

  38. Abel EL (1975) Cannabis: effects on hunger and thirst. Behav Biol 15:255–281

    Article  PubMed  CAS  Google Scholar 

  39. Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology 143:315–317

    Article  PubMed  CAS  Google Scholar 

  40. Gomez R, Navarro M, Ferrer B et al (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosc 22:9612–9617

    CAS  Google Scholar 

  41. Cota D, Marsicano G, Lutz B et al (2003) Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord 27:289–301

    Article  PubMed  CAS  Google Scholar 

  42. Cota D, Marsicano G, Tschop M et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    Article  PubMed  CAS  Google Scholar 

  43. Di Marzo V, Goparaju SK, Wang L et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  PubMed  Google Scholar 

  44. Cowley MA, Smart JL, Rubinstein M et al (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  PubMed  CAS  Google Scholar 

  45. Hunter RG, Philpot K, Vicentic A et al (2004) CART in feeding and obesity. Trends Endocrinol Metab 15:454–459

    Article  PubMed  CAS  Google Scholar 

  46. Kristensen P, Judge ME, Thim L et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76

    Article  PubMed  CAS  Google Scholar 

  47. Rohner-Jeanrenaud F, Craft LS, Bridwell J et al (2002) Chronic central infusion of cocaineand amphetamine-regulated transcript (CART 55–102): effects on body weight homeostasis in lean and high-fat-fed obese rats. Int J Obes Relat Metab Disord 26:143–149

    Article  PubMed  CAS  Google Scholar 

  48. Kong WM, Stanley S, Gardiner J et al (2003) A role for arcuate cocaine and amphetamine-regulated transcript in hyperphagia, thermogenesis, and cold adaptation. FASEB J 17:1688–1690

    PubMed  CAS  Google Scholar 

  49. Johansen JE, Broberger C, Lavebratt C et al (2000) Hypothalamic CART and serum leptin levels are reduced in the anorectic (anx/anx) mouse. Brain Res Mol Brain Res 84:97–105

    Article  PubMed  CAS  Google Scholar 

  50. Smith BK, York DA, Bray GA (1994) Chronic cerebroventricular galanin does not induce sustained hyperphagia or obesity. Peptides 15:1267–1272

    Article  PubMed  CAS  Google Scholar 

  51. Heiman ML, Statnick MA (2003) Galanin-like peptide functions more like leptin than like galanin. Endocrinology 144:4707–4708

    Article  PubMed  CAS  Google Scholar 

  52. Gundlach AL (2002) Galanin/GALP and galanin receptors: role in central control of feeding, body weight/obesity and reproduction? Eur J Pharmacol 440:255–268

    Article  PubMed  CAS  Google Scholar 

  53. Li RY, Song HD, Shi WJ et al (2004) Galanin inhibits leptin expression and secretion in rat adipose tissue and 3T3-L1 adipocytes. J Mol Endocrinol 33:11–19

    Article  PubMed  Google Scholar 

  54. Kyrkouli SE, Stanley BG, Scirafi RD et al (1990) Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide’s effects in the brain. Peptides 11:995–1001

    Article  PubMed  CAS  Google Scholar 

  55. Tempel DL, Leibowitz KJ, Leibowitz SF (1988) Effects of PVN galanin on macronutrient selection. Peptides 9:309–314

    Article  PubMed  CAS  Google Scholar 

  56. Smith BK, York DA, Bray GA (1994) Chronic cere-broventricular galanin does not induce sustained hyperphagia or obesity. Peptides 15:1267–1272

    Article  PubMed  CAS  Google Scholar 

  57. Cunningham MJ (2004) Galanin-like peptide as a link between metabolism and reproduction. J Neuroendocrinol 16:717–723

    Article  PubMed  CAS  Google Scholar 

  58. Jureus A, Cunningham MJ, Li D et al (2001) Distribution and regulation of galanin-like peptide (GALP) in the hypothalamus of the mouse. Endocrinology 142:5140–5144

    Article  PubMed  CAS  Google Scholar 

  59. Krasnow SM, Fraley GS, Schuh SM et al (2003) A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology 144:813–822

    Article  PubMed  CAS  Google Scholar 

  60. Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23:1537–1551

    Article  PubMed  CAS  Google Scholar 

  61. Tecott LH, Sun LM, Akana SF et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  PubMed  CAS  Google Scholar 

  62. Morley JE, Flood JF (1992) Competitive antagonism of nitric oxide synthetase causes weight loss in mice. Life Sci 51:1285–1289

    Article  PubMed  CAS  Google Scholar 

  63. Calapai G, Corica F, Allegra A et al (1998) Effects of intracerebroventricular leptin administration on food intake, body weight gain and diencephalic nitric oxide synthase activity in the mouse. Br J Pharmacol 125:798–802

    Article  PubMed  CAS  Google Scholar 

  64. Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  PubMed  CAS  Google Scholar 

  65. Muccioli G, Tschop M, Papotti M et al (2002) Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol 440:235–254

    Article  PubMed  CAS  Google Scholar 

  66. Arvat E, Maccario M, Di Vito L et al (2001) Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab 86:1169–1174

    Article  PubMed  CAS  Google Scholar 

  67. Horvath TL, Diano S, Sotonyi P et al (2001) Minireview: ghrelin and the regulation of energy balance — a hypothalamic perspective. Endocrinology 142:4163–4169

    Article  PubMed  CAS  Google Scholar 

  68. Hewson AK, Dickson SL (2000) Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 12:1047–1049

    Article  PubMed  CAS  Google Scholar 

  69. Cummings DE, Purnell JQ, Frayo RS et al (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719

    Article  PubMed  CAS  Google Scholar 

  70. Broglio F, Gottero C, Benso A et al (2003) Ghrelin and the endocrine pancreas. Endocrine 22:19–24

    Article  PubMed  CAS  Google Scholar 

  71. Choi K, Roh SG, Hong YH et al (2003) The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 144:754–759

    Article  PubMed  CAS  Google Scholar 

  72. Kolaczynski JW, Ohannesian JP, Considine RV et al (1996) Response of leptin to short-term and prolonged overfeeding in humans. J Clin Endocrinol Metab 81:4162–4165

    Article  PubMed  CAS  Google Scholar 

  73. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  74. Chua SC Jr, Chung WK, Wu-Peng XS et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996

    Article  PubMed  CAS  Google Scholar 

  75. Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  76. Woods SC (2004) Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol Gastrointest Liver Physiol 286:G7–G13

    Article  PubMed  CAS  Google Scholar 

  77. Sobhani I, Buyse M, Goiot H et al (2002) Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology 122:259–263

    Article  PubMed  CAS  Google Scholar 

  78. Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to Clq, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  PubMed  CAS  Google Scholar 

  79. Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599

    PubMed  CAS  Google Scholar 

  80. Matsubara M, Maruoka S, Katayose S (2002) Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol 147:173–180

    Article  PubMed  CAS  Google Scholar 

  81. Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  PubMed  CAS  Google Scholar 

  82. Naslund E, Bogefors J, Skogar S et al (1999) GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 277:R910–R916

    PubMed  CAS  Google Scholar 

  83. Orskov C (1992) Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 35:701–711

    PubMed  CAS  Google Scholar 

  84. Naslund E, Barkeling B, King N et al (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311

    Article  PubMed  CAS  Google Scholar 

  85. Nauck MA, Niedereichholz U, Ettler R et al (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273:E981–E988

    PubMed  CAS  Google Scholar 

  86. Turton MD, O’Shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72

    Article  PubMed  CAS  Google Scholar 

  87. Verdich C, Flint A, Gutzwiller JP et al (2001) A metaanalysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86:4382–4389

    Article  PubMed  CAS  Google Scholar 

  88. Hartmann B, Johnsen AH, Orskov C et al (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21:73–80

    Article  PubMed  CAS  Google Scholar 

  89. Tang-Christensen M, Larsen PJ, Thulesen J et al (2000) The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 6:802–807

    Article  PubMed  CAS  Google Scholar 

  90. Schmidt PT, Naslund E, Gryback P et al (2005) Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul Pept 116:21–25

    Article  CAS  Google Scholar 

  91. Cohen MA, Ellis SM, Le Roux CW et al (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701

    Article  PubMed  CAS  Google Scholar 

  92. Le Quellec A, Kervran A, Blache P et al (1992) Oxyntomodulin-like immunoreactivity: diurnal profile of a new potential enterogastrone. J Clin Endocrinol Metab 74:1405–1409

    Article  PubMed  Google Scholar 

  93. Dakin CL, Gunn I, Small CJ et al (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142:4244–4250

    Article  PubMed  CAS  Google Scholar 

  94. Gros L, Thorens B, Bataille D et al (1993) Glucagon-like peptide-l-(7-36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology 133:631–638

    Article  PubMed  CAS  Google Scholar 

  95. Schjoldager B, Mortensen PE, Myhre J et al (1989) Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig Dis Sci 34:1411–1419

    Article  PubMed  CAS  Google Scholar 

  96. Lutz TA, Tschudy S, Mollet A et al (2001) Dopamine D(2) receptors mediate amylin’s acute satiety effect. Am J Physiol Regul Integr Comp Physiol 280:R1697–R1703

    PubMed  CAS  Google Scholar 

  97. Reidelberger RD, Arnelo U, Granqvist L et al (2001) Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 280:R605–R611

    PubMed  CAS  Google Scholar 

  98. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84:488–495

    Article  PubMed  CAS  Google Scholar 

  99. Moran TH (2000) Cholecystokinin and satiety: current perspectives. Nutrition 16:858–865

    Article  PubMed  CAS  Google Scholar 

  100. Emond M, Schwartz GJ, Ladenheim EE et al (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549

    PubMed  CAS  Google Scholar 

  101. West DB, Greenwood MR, Marshall KA et al (1987) Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite 8:221–227

    Article  PubMed  CAS  Google Scholar 

  102. Funakoshi A, Miyasaka K, Shinozaki H et al (1995) An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor. Biochem Biophys Res Commun 210:787–796

    Article  PubMed  CAS  Google Scholar 

  103. Reidelberger RD, Varga G, Solomon TE (1991) Effects of selective cholecystokinin antagonists L364,718 and L365,260 on food intake in rats. Peptides 12:1215–1221

    Article  PubMed  CAS  Google Scholar 

  104. Covasa M, Marcuson JK, Ritter RC (2001) Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 280:R331–R337

    PubMed  CAS  Google Scholar 

  105. Crawley JN, Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302:703–706

    Article  PubMed  CAS  Google Scholar 

  106. West DB, Fey D, Woods SC (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246:R776–R787

    PubMed  CAS  Google Scholar 

  107. Kawano K, Hirashima T, Mori S et al (1992) Spontaneous long-term hyperglycémie rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41:1422–1428

    Article  PubMed  CAS  Google Scholar 

  108. Moran TH, Katz LF, Plata-Salaman CR et al (1998) Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 274:R618–R625

    PubMed  CAS  Google Scholar 

  109. Kopin AS, Mathes WF, McBride EW et al (1999) The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103:383–391

    Article  PubMed  CAS  Google Scholar 

  110. Grandt D, Schimiczek M, Beglinger C et al (1994) Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept 51:151–159

    Article  PubMed  CAS  Google Scholar 

  111. Hagan MM (2002) Peptide YY: a key mediator of orexigenic behavior. Peptides 23:377–382

    Article  PubMed  CAS  Google Scholar 

  112. Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654

    Article  PubMed  CAS  Google Scholar 

  113. Batterham RL, Cohen MA, Ellis SM et al (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349:941–948

    Article  PubMed  CAS  Google Scholar 

  114. Cone RD, Cowley MA, Butler AA et al (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25:S63–S67

    Article  PubMed  CAS  Google Scholar 

  115. Tschop M, Weyer C, Tataranni PA et al (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709

    Article  PubMed  CAS  Google Scholar 

  116. Rushing PA, Henderson RP, Gibbs J (1998) Prolongation of the postprandial intermeal interval by gastrin-releasing peptidel-27 in spontaneously feeding rats. Peptides 19:175–177

    Article  PubMed  CAS  Google Scholar 

  117. Ohinata K, Shimano T, Yamauchi R et al (2004) The anorectic effect of neurotensin is mediated via a histamine H1 receptor in mice. Peptides 25:2135–2138

    Article  PubMed  CAS  Google Scholar 

  118. Rosen ED (2003) Energy balance: a new role for PPARalpha. Curr Biol 13:R961–R963

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Prodam, F. et al. (2006). Body Weight Regulation and Hypothalamic Neuropeptides. In: Mantovani, G., et al. Cachexia and Wasting: A Modern Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-0552-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0552-5_27

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0471-9

  • Online ISBN: 978-88-470-0552-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics