Advertisement

Body Weight Regulation and Hypothalamic Neuropeptides

  • Flavia Prodam
  • Elisa Me
  • Fabrizio Riganti
  • Maria Angela Seardo
  • Barbara Lucatello
  • Mario Maccario
  • Ezio Ghigo
  • Fabio Broglio

Abstract

The epidemic increasing incidence and prevalence of obesity and diabetes mellitus have underlined the necessity of understanding the regulation and control of appetite and energy metabolism.

Keywords

Gastric Emptying Body Weight Regulation Anorectic Effect Galanin Receptor Inhibit Food Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edholm OG (1977) Energy balance in man: studies carried out by the Division of Human Physiology, National Institute for Medical Research. J Hum Nutr 31:413–431PubMedGoogle Scholar
  2. 2.
    Neary NM, Goldstone AP, Bloom SR (2004) Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol 60:153–160CrossRefGoogle Scholar
  3. 3.
    Allen YS, Adrian TE, Allen JM et al (1983) Neuropeptide Y distribution in the rat brain. Science 221:877–879PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz MW, Seeley RJ, Campfield LA et al (1996) Identification of targets of leptin action in rat hypo-thalamus. J Clin Invest 98:1101–1106PubMedGoogle Scholar
  5. 5.
    McDonald JK, Lumpkin MD, Samson WK et al (1985) Neuropeptide Y affects secretion of luteinising hormone and growth hormone in ovariectomised rats. Proc Natl Acad Sci USA 82:561–564PubMedCrossRefGoogle Scholar
  6. 6.
    Qian S, Chen H, Weingarth D et al (2002) Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22:5027–5035PubMedCrossRefGoogle Scholar
  7. 7.
    Wilding JP (2002) Neuropeptides and appetite control. Diabet Med 19:619–627PubMedCrossRefGoogle Scholar
  8. 8.
    Schaffhauser AO, Stricker-Krongrad A, Brunner L et al (1997) Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides. Diabetes 46:1792–1798PubMedCrossRefGoogle Scholar
  9. 9.
    Sawchenko PE, Pfeiffer SW (1988) Ultrastructural localisation of neuropeptide Y and galanin immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Res 474:231–245PubMedCrossRefGoogle Scholar
  10. 10.
    Wynne K, Stanley S, McGowan B et al (2005) Appetite control. J Endocrinol 184:291–318PubMedCrossRefGoogle Scholar
  11. 11.
    Small CJ, Kim MS, Stanley SA et al (2001) Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 50:248–254PubMedCrossRefGoogle Scholar
  12. 12.
    Kalra SP, Dube MG, Pu S et al (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100PubMedCrossRefGoogle Scholar
  13. 13.
    Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198PubMedCrossRefGoogle Scholar
  14. 14.
    van der Lely AJ, Tschop M, Heiman ML et al (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25:426–457PubMedCrossRefGoogle Scholar
  15. 15.
    Konturek SJ, Konturek JW, Pawlik T et al (2004) Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 55:137–154PubMedGoogle Scholar
  16. 16.
    Yang YK, Harmon CM (2003) Recent developments in our understanding of melanocortin system in the regulation of food intake. Obes Rev 4:239–248PubMedCrossRefGoogle Scholar
  17. 17.
    Ollmann MM, Wilson BD, Yang YK et al (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138PubMedCrossRefGoogle Scholar
  18. 18.
    Yaswen L, Diehl N, Brennan MB et al (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070PubMedCrossRefGoogle Scholar
  19. 19.
    Marsh DJ, Hollopeter G, Huszar D et al (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21:119–122PubMedCrossRefGoogle Scholar
  20. 20.
    Fehm HL, Smolnik R, Kern W et al (2001) The melanocortin melanocyte-stimulating hormone/adreno-corticotropin(4-10) decreases body fat in humans. J Clin Endocrinol Metab 86:1144–1148PubMedCrossRefGoogle Scholar
  21. 21.
    Wank SA, Pisegna JR, de Weerth A (1992) Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc Natl Acad Sci USA 15(89):8691–8695CrossRefGoogle Scholar
  22. 22.
    Cupples WA (2003) Regulating food intake. Am J Physiol Regul Integr Comp Physiol 284:R652–R654PubMedGoogle Scholar
  23. 23.
    Richardson RD, Omachi K, Kermani R et al (2002) Intraventricular insulin potentiates the anorexic effect of corticotropin releasing hormone in rats. Am J Physiol Regul Integr Comp Physiol 283:R1321–R1326PubMedGoogle Scholar
  24. 24.
    Ivanov TR, Le Rouzic P, Stanley PJ et al (2004) Neuromedin U neurones in the rat nucleus of the tractus solitarius are catecholaminergic and respond to peripheral cholecystokinin. J Neuroendocrinol 16:612–619PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson EL, Murphy KG, Todd JF et al (2004) Chronic administration of NMU into the paraventricular nucleus stimulates the HPA axis but does not influence food intake or body weight. Biochem Biophys Res Commun 323:65–71PubMedCrossRefGoogle Scholar
  26. 26.
    Wren AM, Small CJ, Abbott CR et al (2002) Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234PubMedCrossRefGoogle Scholar
  27. 27.
    Hanada R, Teranishi H, Pearson JT et al (2004) Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med 10:1067–1073PubMedCrossRefGoogle Scholar
  28. 28.
    Nagle DL, McGrail SH, Vitale J et al (1999) The mahogany protein is a receptor involved in suppression of obesity. Nature 398:148–152PubMedCrossRefGoogle Scholar
  29. 29.
    Gunn TM, Miller KA, He L et al (1999) The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 398:152–156PubMedCrossRefGoogle Scholar
  30. 30.
    Rapraeger AC, Ott VL (1998) Molecular interactions of the syndecan core proteins. Curr Opin Cell Biol 10:620–628PubMedCrossRefGoogle Scholar
  31. 31.
    Reizes O, Lincecum J, Wang Z et al (2001) Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 106:105–116PubMedCrossRefGoogle Scholar
  32. 32.
    Hellstrom PM, Geliebter A, Naslund E et al (2004) Peripheral and central signals in the control of eating in normal, obese and binge-eating human subjects. Br J Nutr 92:S47–S57PubMedCrossRefGoogle Scholar
  33. 33.
    Ouedraogo R, Naslund E, Kirchgessner AL (2003) Glucose regulates the release of orexin-a from the endocrine pancreas. Diabetes 52:111–117PubMedCrossRefGoogle Scholar
  34. 34.
    Adam JA, Menheere PP, van Dielen FM et al (2002) Decreased plasma orexin-A levels in obese individuals. Int J Obes Relat Metab Disord 26:274–276PubMedCrossRefGoogle Scholar
  35. 35.
    Samson WK, Taylor MM (2001) Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am J Physiol Regul Integr Comp Physiol 281:R1140–R1145PubMedGoogle Scholar
  36. 36.
    Wang C, Kotz CM (2002) Urocortin in the lateral septal area modulates feeding induced by orexin A in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 283:R358–R367PubMedGoogle Scholar
  37. 37.
    Lambert PD, Wilding JP, al-Dokhayel AA et al (1993) The effect of central blockade of kappa-opioid receptors on neuropeptide Y-induced feeding in the rat. Brain Res 629:146–148PubMedCrossRefGoogle Scholar
  38. 38.
    Abel EL (1975) Cannabis: effects on hunger and thirst. Behav Biol 15:255–281PubMedCrossRefGoogle Scholar
  39. 39.
    Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology 143:315–317PubMedCrossRefGoogle Scholar
  40. 40.
    Gomez R, Navarro M, Ferrer B et al (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosc 22:9612–9617Google Scholar
  41. 41.
    Cota D, Marsicano G, Lutz B et al (2003) Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord 27:289–301PubMedCrossRefGoogle Scholar
  42. 42.
    Cota D, Marsicano G, Tschop M et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431PubMedCrossRefGoogle Scholar
  43. 43.
    Di Marzo V, Goparaju SK, Wang L et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825PubMedCrossRefGoogle Scholar
  44. 44.
    Cowley MA, Smart JL, Rubinstein M et al (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484PubMedCrossRefGoogle Scholar
  45. 45.
    Hunter RG, Philpot K, Vicentic A et al (2004) CART in feeding and obesity. Trends Endocrinol Metab 15:454–459PubMedCrossRefGoogle Scholar
  46. 46.
    Kristensen P, Judge ME, Thim L et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76PubMedCrossRefGoogle Scholar
  47. 47.
    Rohner-Jeanrenaud F, Craft LS, Bridwell J et al (2002) Chronic central infusion of cocaineand amphetamine-regulated transcript (CART 55–102): effects on body weight homeostasis in lean and high-fat-fed obese rats. Int J Obes Relat Metab Disord 26:143–149PubMedCrossRefGoogle Scholar
  48. 48.
    Kong WM, Stanley S, Gardiner J et al (2003) A role for arcuate cocaine and amphetamine-regulated transcript in hyperphagia, thermogenesis, and cold adaptation. FASEB J 17:1688–1690PubMedGoogle Scholar
  49. 49.
    Johansen JE, Broberger C, Lavebratt C et al (2000) Hypothalamic CART and serum leptin levels are reduced in the anorectic (anx/anx) mouse. Brain Res Mol Brain Res 84:97–105PubMedCrossRefGoogle Scholar
  50. 50.
    Smith BK, York DA, Bray GA (1994) Chronic cerebroventricular galanin does not induce sustained hyperphagia or obesity. Peptides 15:1267–1272PubMedCrossRefGoogle Scholar
  51. 51.
    Heiman ML, Statnick MA (2003) Galanin-like peptide functions more like leptin than like galanin. Endocrinology 144:4707–4708PubMedCrossRefGoogle Scholar
  52. 52.
    Gundlach AL (2002) Galanin/GALP and galanin receptors: role in central control of feeding, body weight/obesity and reproduction? Eur J Pharmacol 440:255–268PubMedCrossRefGoogle Scholar
  53. 53.
    Li RY, Song HD, Shi WJ et al (2004) Galanin inhibits leptin expression and secretion in rat adipose tissue and 3T3-L1 adipocytes. J Mol Endocrinol 33:11–19PubMedCrossRefGoogle Scholar
  54. 54.
    Kyrkouli SE, Stanley BG, Scirafi RD et al (1990) Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide’s effects in the brain. Peptides 11:995–1001PubMedCrossRefGoogle Scholar
  55. 55.
    Tempel DL, Leibowitz KJ, Leibowitz SF (1988) Effects of PVN galanin on macronutrient selection. Peptides 9:309–314PubMedCrossRefGoogle Scholar
  56. 56.
    Smith BK, York DA, Bray GA (1994) Chronic cere-broventricular galanin does not induce sustained hyperphagia or obesity. Peptides 15:1267–1272PubMedCrossRefGoogle Scholar
  57. 57.
    Cunningham MJ (2004) Galanin-like peptide as a link between metabolism and reproduction. J Neuroendocrinol 16:717–723PubMedCrossRefGoogle Scholar
  58. 58.
    Jureus A, Cunningham MJ, Li D et al (2001) Distribution and regulation of galanin-like peptide (GALP) in the hypothalamus of the mouse. Endocrinology 142:5140–5144PubMedCrossRefGoogle Scholar
  59. 59.
    Krasnow SM, Fraley GS, Schuh SM et al (2003) A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology 144:813–822PubMedCrossRefGoogle Scholar
  60. 60.
    Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23:1537–1551PubMedCrossRefGoogle Scholar
  61. 61.
    Tecott LH, Sun LM, Akana SF et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546PubMedCrossRefGoogle Scholar
  62. 62.
    Morley JE, Flood JF (1992) Competitive antagonism of nitric oxide synthetase causes weight loss in mice. Life Sci 51:1285–1289PubMedCrossRefGoogle Scholar
  63. 63.
    Calapai G, Corica F, Allegra A et al (1998) Effects of intracerebroventricular leptin administration on food intake, body weight gain and diencephalic nitric oxide synthase activity in the mouse. Br J Pharmacol 125:798–802PubMedCrossRefGoogle Scholar
  64. 64.
    Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  65. 65.
    Muccioli G, Tschop M, Papotti M et al (2002) Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. Eur J Pharmacol 440:235–254PubMedCrossRefGoogle Scholar
  66. 66.
    Arvat E, Maccario M, Di Vito L et al (2001) Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. J Clin Endocrinol Metab 86:1169–1174PubMedCrossRefGoogle Scholar
  67. 67.
    Horvath TL, Diano S, Sotonyi P et al (2001) Minireview: ghrelin and the regulation of energy balance — a hypothalamic perspective. Endocrinology 142:4163–4169PubMedCrossRefGoogle Scholar
  68. 68.
    Hewson AK, Dickson SL (2000) Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 12:1047–1049PubMedCrossRefGoogle Scholar
  69. 69.
    Cummings DE, Purnell JQ, Frayo RS et al (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719PubMedCrossRefGoogle Scholar
  70. 70.
    Broglio F, Gottero C, Benso A et al (2003) Ghrelin and the endocrine pancreas. Endocrine 22:19–24PubMedCrossRefGoogle Scholar
  71. 71.
    Choi K, Roh SG, Hong YH et al (2003) The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 144:754–759PubMedCrossRefGoogle Scholar
  72. 72.
    Kolaczynski JW, Ohannesian JP, Considine RV et al (1996) Response of leptin to short-term and prolonged overfeeding in humans. J Clin Endocrinol Metab 81:4162–4165PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  74. 74.
    Chua SC Jr, Chung WK, Wu-Peng XS et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996PubMedCrossRefGoogle Scholar
  75. 75.
    Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295PubMedCrossRefGoogle Scholar
  76. 76.
    Woods SC (2004) Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol Gastrointest Liver Physiol 286:G7–G13PubMedCrossRefGoogle Scholar
  77. 77.
    Sobhani I, Buyse M, Goiot H et al (2002) Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology 122:259–263PubMedCrossRefGoogle Scholar
  78. 78.
    Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to Clq, produced exclusively in adipocytes. J Biol Chem 270:26746–26749PubMedCrossRefGoogle Scholar
  79. 79.
    Hotta K, Funahashi T, Arita Y et al (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599PubMedGoogle Scholar
  80. 80.
    Matsubara M, Maruoka S, Katayose S (2002) Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol 147:173–180PubMedCrossRefGoogle Scholar
  81. 81.
    Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312PubMedCrossRefGoogle Scholar
  82. 82.
    Naslund E, Bogefors J, Skogar S et al (1999) GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 277:R910–R916PubMedGoogle Scholar
  83. 83.
    Orskov C (1992) Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 35:701–711PubMedGoogle Scholar
  84. 84.
    Naslund E, Barkeling B, King N et al (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311PubMedCrossRefGoogle Scholar
  85. 85.
    Nauck MA, Niedereichholz U, Ettler R et al (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273:E981–E988PubMedGoogle Scholar
  86. 86.
    Turton MD, O’Shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72PubMedCrossRefGoogle Scholar
  87. 87.
    Verdich C, Flint A, Gutzwiller JP et al (2001) A metaanalysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86:4382–4389PubMedCrossRefGoogle Scholar
  88. 88.
    Hartmann B, Johnsen AH, Orskov C et al (2000) Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 21:73–80PubMedCrossRefGoogle Scholar
  89. 89.
    Tang-Christensen M, Larsen PJ, Thulesen J et al (2000) The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 6:802–807PubMedCrossRefGoogle Scholar
  90. 90.
    Schmidt PT, Naslund E, Gryback P et al (2005) Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul Pept 116:21–25CrossRefGoogle Scholar
  91. 91.
    Cohen MA, Ellis SM, Le Roux CW et al (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701PubMedCrossRefGoogle Scholar
  92. 92.
    Le Quellec A, Kervran A, Blache P et al (1992) Oxyntomodulin-like immunoreactivity: diurnal profile of a new potential enterogastrone. J Clin Endocrinol Metab 74:1405–1409PubMedCrossRefGoogle Scholar
  93. 93.
    Dakin CL, Gunn I, Small CJ et al (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142:4244–4250PubMedCrossRefGoogle Scholar
  94. 94.
    Gros L, Thorens B, Bataille D et al (1993) Glucagon-like peptide-l-(7-36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology 133:631–638PubMedCrossRefGoogle Scholar
  95. 95.
    Schjoldager B, Mortensen PE, Myhre J et al (1989) Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig Dis Sci 34:1411–1419PubMedCrossRefGoogle Scholar
  96. 96.
    Lutz TA, Tschudy S, Mollet A et al (2001) Dopamine D(2) receptors mediate amylin’s acute satiety effect. Am J Physiol Regul Integr Comp Physiol 280:R1697–R1703PubMedGoogle Scholar
  97. 97.
    Reidelberger RD, Arnelo U, Granqvist L et al (2001) Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 280:R605–R611PubMedGoogle Scholar
  98. 98.
    Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84:488–495PubMedCrossRefGoogle Scholar
  99. 99.
    Moran TH (2000) Cholecystokinin and satiety: current perspectives. Nutrition 16:858–865PubMedCrossRefGoogle Scholar
  100. 100.
    Emond M, Schwartz GJ, Ladenheim EE et al (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549PubMedGoogle Scholar
  101. 101.
    West DB, Greenwood MR, Marshall KA et al (1987) Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite 8:221–227PubMedCrossRefGoogle Scholar
  102. 102.
    Funakoshi A, Miyasaka K, Shinozaki H et al (1995) An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor. Biochem Biophys Res Commun 210:787–796PubMedCrossRefGoogle Scholar
  103. 103.
    Reidelberger RD, Varga G, Solomon TE (1991) Effects of selective cholecystokinin antagonists L364,718 and L365,260 on food intake in rats. Peptides 12:1215–1221PubMedCrossRefGoogle Scholar
  104. 104.
    Covasa M, Marcuson JK, Ritter RC (2001) Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 280:R331–R337PubMedGoogle Scholar
  105. 105.
    Crawley JN, Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302:703–706PubMedCrossRefGoogle Scholar
  106. 106.
    West DB, Fey D, Woods SC (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246:R776–R787PubMedGoogle Scholar
  107. 107.
    Kawano K, Hirashima T, Mori S et al (1992) Spontaneous long-term hyperglycémie rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41:1422–1428PubMedCrossRefGoogle Scholar
  108. 108.
    Moran TH, Katz LF, Plata-Salaman CR et al (1998) Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 274:R618–R625PubMedGoogle Scholar
  109. 109.
    Kopin AS, Mathes WF, McBride EW et al (1999) The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103:383–391PubMedCrossRefGoogle Scholar
  110. 110.
    Grandt D, Schimiczek M, Beglinger C et al (1994) Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept 51:151–159PubMedCrossRefGoogle Scholar
  111. 111.
    Hagan MM (2002) Peptide YY: a key mediator of orexigenic behavior. Peptides 23:377–382PubMedCrossRefGoogle Scholar
  112. 112.
    Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654PubMedCrossRefGoogle Scholar
  113. 113.
    Batterham RL, Cohen MA, Ellis SM et al (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349:941–948PubMedCrossRefGoogle Scholar
  114. 114.
    Cone RD, Cowley MA, Butler AA et al (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25:S63–S67PubMedCrossRefGoogle Scholar
  115. 115.
    Tschop M, Weyer C, Tataranni PA et al (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709PubMedCrossRefGoogle Scholar
  116. 116.
    Rushing PA, Henderson RP, Gibbs J (1998) Prolongation of the postprandial intermeal interval by gastrin-releasing peptidel-27 in spontaneously feeding rats. Peptides 19:175–177PubMedCrossRefGoogle Scholar
  117. 117.
    Ohinata K, Shimano T, Yamauchi R et al (2004) The anorectic effect of neurotensin is mediated via a histamine H1 receptor in mice. Peptides 25:2135–2138PubMedCrossRefGoogle Scholar
  118. 118.
    Rosen ED (2003) Energy balance: a new role for PPARalpha. Curr Biol 13:R961–R963PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Flavia Prodam
    • 1
  • Elisa Me
    • 1
  • Fabrizio Riganti
    • 1
  • Maria Angela Seardo
    • 1
  • Barbara Lucatello
    • 1
  • Mario Maccario
    • 1
  • Ezio Ghigo
    • 1
  • Fabio Broglio
    • 1
  1. 1.Department of Internal Medicine, Division of Endocrinology and MetabolismUniversity of TurinTurinItaly

Personalised recommendations