Brain Mechanisms in Wasting and Cachexia

  • Carlos R. Plata-Salaman


As summarised in previous chapters, chronic (neoplastic, necrotic, infectious) pathophysiological processes of various systems are frequently accompanied by wasting and cachexia. The pathophysiology of wasting and cachexia is complex [1] [10] and multiple brain mechanisms [11] [13] can be involved including neurological, psychiatric, psychological, physiological, biochemical/ metabolic, immunological, and chemical per se (e.g. neurotransmitter-, neuropeptideand cytokine-related). These mechanisms can interact/synergise with peripheral/systemic processes or dysfunctions (e.g. gastrointestinal malabsorption and body losses such as via ulcers, effusions, haemorrhage).


Cancer Cachexia Brain Mechanism Circumventricular Organ Melanocortin System Central Nervous System Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mantovani G, Macciò A, Madeddu C, Massa E (2003) Cancer-related cachexia and oxidative stress: beyond current therapeutic options. Expert Rev Anticancer Ther 3:381–392PubMedCrossRefGoogle Scholar
  2. 2.
    Argiles JM, Moore-Carrasco R, Busquets S, Lopez-Soriano FJ (2003) Catabolic mediators as targets for cancer cachexia. Drug Discov Today 15:838–844CrossRefGoogle Scholar
  3. 3.
    Langhans W (2002) Peripheral mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 5:419–426PubMedCrossRefGoogle Scholar
  4. 4.
    Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871PubMedCrossRefGoogle Scholar
  5. 5.
    Hasselgren PO, Wray C, Mammen J (2002) Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 290:1–10PubMedCrossRefGoogle Scholar
  6. 6.
    Costelli P, Baccino FM (2003) Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis. Curr Opin Clin Nutr Metab Care 6:407–412PubMedCrossRefGoogle Scholar
  7. 7.
    Inui A, Meguid MM (2003) Cachexia and obesity: two sides of one coin? Curr Opin Clin Nutr Metab Care 6:395–399PubMedCrossRefGoogle Scholar
  8. 8.
    Laviano A, Russo M, Freda F, Rossi Fanelli F (2002) Neurochemical mechanisms for cancer anorexia. Nutrition 18:100–105PubMedCrossRefGoogle Scholar
  9. 9.
    Laviano A, Meguid MM, Rossi Fanelli F (2003) Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol 4:686–694PubMedCrossRefGoogle Scholar
  10. 10.
    Nandi J, Meguid MM, Inui A et al (2002) Central mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 5:407–418PubMedCrossRefGoogle Scholar
  11. 11.
    Plata-Salaman CR (2000) Central nervous system mechanisms contributing to the cachexia-anorexia syndrome. Nutrition 16:1009–1012PubMedCrossRefGoogle Scholar
  12. 12.
    Plata-Salaman CR (1997) Anorexia during acute and chronic disease: relevance of neurotransmitter-peptide-cytokine interactions. Nutrition 13:159–160PubMedCrossRefGoogle Scholar
  13. 13.
    Plata-Salaman CR (2001) Brain cytokine production and action in anorexia and cachexia. Cytokine 15:1–3PubMedCrossRefGoogle Scholar
  14. 14.
    Plata-Salaman CR (1996) Anorexia during acute and chronic disease. Nutrition 12:69–78PubMedCrossRefGoogle Scholar
  15. 15.
    Sanders PM, Tisdale MJ (2004) Role of lipid-mobilising factor (LMF) in protecting tumour cells from oxidative damage. Br J Cancer 90:1274–1278PubMedCrossRefGoogle Scholar
  16. 16.
    Ryden M, Arvidsson E, Blomqvist L et al (2004) Targets for TNF-a-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 318:168–175PubMedCrossRefGoogle Scholar
  17. 17.
    Argiles JM, Busquets S, Lopez-Soriano FJ (2002) The role of uncoupling proteins in pathophysiological states. Biochem Biophys Res Commun 293:1145–1152PubMedCrossRefGoogle Scholar
  18. 18.
    Pfitzenmaier J, Vessella R, Higano CS et al (2003) Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 97:1211–1216PubMedCrossRefGoogle Scholar
  19. 19.
    Negri DR, Mezzanzanica D, Sacco S et al (2001) Role of cytokines in cancer cachexia in a murine model of intracerebral injection of human tumours. Cytokine 15:27–38PubMedCrossRefGoogle Scholar
  20. 20.
    Prima V, Tennant M, Gorbatyuk OS et al (2004) Differential modulation of energy balance by leptin, ciliary neurotrophic factor, and leukemia inhibitory factor gene delivery: microarray deoxyribonucleic acid-chip analysis of gene expression. Endocrinology 145:2035–2045PubMedCrossRefGoogle Scholar
  21. 21.
    Plata-Salaman CR (2002) Brain cytokines and disease. Acta Neuropsychiatrica 14:262–278CrossRefGoogle Scholar
  22. 22.
    Meguid MM, Ramos EJ, Laviano A et al (2004) Tumor anorexia: effects on neuropeptide Y and monoamines in paraventricular nucleus. Peptides 25:261–266PubMedCrossRefGoogle Scholar
  23. 23.
    Inui A (1999) Neuropeptide Y: a key molecule in anorexia and cachexia in wasting disorders? Mol Med Today 5:79–85PubMedCrossRefGoogle Scholar
  24. 24.
    Wisse BE, Schwartz MW, Cummings DE (2003) Melanocortin signaling and anorexia in chronic disease states. Ann NY Acad Sci 994:275–281PubMedGoogle Scholar
  25. 25.
    Marks DL, Cone RD (2003) The role of the melano-cortin-3 receptor in cachexia. Ann NY Acad Sci 994:258–266PubMedCrossRefGoogle Scholar
  26. 26.
    Marks DL, Ling N, Cone RD (2001) Role of the central melanocortin system in cachexia. Cancer Res 61:1432–1438PubMedGoogle Scholar
  27. 27.
    Plata-Salaman CR (1998) Cytokine-induced anorexia: behavioral, cellular and molecular mechanisms. Ann NY Acad Sci 856:160–170PubMedCrossRefGoogle Scholar
  28. 28.
    Kelley KW, Bluthe RM, Dantzer R et al (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17(Suppl 1):S112–S118PubMedCrossRefGoogle Scholar
  29. 29.
    Strassmann G, Jacob CO, Evans R et al (1992) Mechanisms of experimental cancer cachexia. Interaction between mononuclear phagocytes and colon-26 carcinoma and its relevance to IL-6-mediated cancer cachexia. J Immunol 148:3674–3678PubMedGoogle Scholar
  30. 30.
    Gelin J, Moldawer LL, Lonnroth C et al (1991) Role of endogenous tumor necrosis factor a and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res 51:415–421PubMedGoogle Scholar
  31. 31.
    Plata-Salaman CR, Ilyin SE, Gayle D (1998) Brain cytokine mRNAs in anorectic rats bearing prostate adenocarcinoma tumor cells. Am J Physiol 275:R566–R573PubMedGoogle Scholar
  32. 32.
    Turrin NP, Ilyin SE, Gayle DA et al (2004) Interleukin-lb system in anorectic catabolic tumor-bearing rats. Curr Opin Clin Nutr Metab Care 7:419–426PubMedCrossRefGoogle Scholar
  33. 33.
    Laviano A, Renvyle T, Meguid MM et al (1995) Relationship between interleukin-1 and cancer anorexia. Nutrition ll:S680–S683Google Scholar
  34. 34.
    Wang W, Lonnroth C, Svanberg E, Lundholm K (2001) Cytokine and cyclooxygenase-2 protein in brain areas of tumor-bearing mice with prostanoid-related anorexia. Cancer Res 61:4707–4715PubMedGoogle Scholar
  35. 35.
    Ozaki K, Yoshida S, Ishibashi N et al (2001) Effect of tumor weight and tube feeding on TNF-a and IL-lb mRNA expression in the brain of mice. J Parenter Enterai Nutr 25:317–322CrossRefGoogle Scholar
  36. 36.
    Plata-Salaman CR, Turrin NP (1999) Cytokine interactions and cytokine balance in the brain: relevance to neurology and psychiatry. Mol Psychiatry 4:303–306CrossRefGoogle Scholar
  37. 37.
    Quinn LS, Anderson BG, Drivdahl RH et al (2002) Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res 280:55–63PubMedCrossRefGoogle Scholar
  38. 38.
    Harrold JA, Williams G (2003) The cannabinoid system: a role in both the homeostatic and hedonic control of eating? Br J Nutr 90:729–734PubMedCrossRefGoogle Scholar
  39. 39.
    Wu JT, Kral JG (2004) Ghrelin: integrative neuroendocrine peptide in health and disease. Ann Surg 239:464–474PubMedCrossRefGoogle Scholar
  40. 40.
    Broglio F, Gottero C, Arvat E, Ghigo E (2003) Endocrine and non-endocrine actions of ghrelin. Horm Res 59:109–117PubMedCrossRefGoogle Scholar
  41. 41.
    Nagaya N, Uematsu M, Kojima M et al (2001) Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation 104:2034–2038PubMedCrossRefGoogle Scholar
  42. 42.
    Lissoni P (2002) Is there a role for melatonin in supportive care? Support Care Cancer 10:110–116PubMedCrossRefGoogle Scholar
  43. 43.
    Davis TW, Zweifel BS, O’Neal JM et al (2004) Inhibition of cyclooxygenase-2 by celecoxib reverses tumor-induced wasting. J Pharmacol Exp Ther 308:929–934PubMedCrossRefGoogle Scholar
  44. 44.
    Lugarini F, Hrupka BJ, Schwartz GJ et al (2002) A role for cyclooxygenase-2 in lipopolysaccharide-induced anorexia in rats. Am J Physiol 283:R862–R868Google Scholar
  45. 45.
    Coma M, Vicente R, Busquets S et al (2003) Impaired voltage-gated K+ channel expression in brain during experimental cancer cachexia. FEBS Lett 536:45–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Carlos R. Plata-Salaman
    • 1
  1. 1.Global External Research & Development, Lilly Research LaboratoriesLilly Corporate CenterIndianapolisUSA

Personalised recommendations