Skip to main content
  • 2119 Accesses

Abstract

Tissue damage is a threat to well-being because it is self-promoting; that is, hydrolases released from inflammatory or injured cells cause further injury and provide substrate for formation and propagation of free radicals. For this reason, the body must localise and limit the injury and clear tissue debris. To perform these functions, the organism has developed an acute-phase response that includes stereotyped, coordinated adaptations ranging from behavioural to physiological [1]. The acute-phase response includes the hepatic synthesis of large quantities of proteins. The functions of the acute-phase proteins vary widely and include binding proteins (opsonins), protease inhibitors, complement factors, apoproteins, fibrinogen, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kushner I (1993) Regulation of the acute phase response by cytokines. Perspect Biol Med 36:611–622

    PubMed  CAS  Google Scholar 

  2. Gotschlich EC (1989) C-reactive protein. A historical overview. Ann NY Acad Sci 557:9–18

    Article  PubMed  CAS  Google Scholar 

  3. Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 335:1897–1905

    Article  PubMed  CAS  Google Scholar 

  4. Feingold KR, Soued M, Serio MK et al (1989) Multiple cytokines stimulate hepatic lipid synthesis in vivo. Endocrinology 125:267–274

    Article  PubMed  CAS  Google Scholar 

  5. Beutler B, Greenwald D, Hulmes JD et al (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–554

    Article  PubMed  CAS  Google Scholar 

  6. Baracos V, Rodemann HP, Dinarello CA et al (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). N Engl J Med 308:553–558

    Article  PubMed  CAS  Google Scholar 

  7. Powanda MC, Beisel WR (1982) Hypothesis: leukocyte endogenous mediator/endogenous pyrogen/lymphocyte-activating factor modulates the development of nonspecific and specific immunity and affects nutritional status. Am J Clin Nutr 35:762–768

    PubMed  CAS  Google Scholar 

  8. Norton JA, Moley JF, Green MV et al (1985) Parabiotic transfer of cancer anorexia/cachexia in male rats. Cancer Res 45:5547–5552

    PubMed  CAS  Google Scholar 

  9. Tracey KJ, Morgello S, Koplin B et al (1990) Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chromic cachexia, while implantation in brain induces predominantly acute anorexia. J Clin Invest 86:2014–2024

    Article  PubMed  CAS  Google Scholar 

  10. Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332:621–628

    Article  PubMed  CAS  Google Scholar 

  11. Grunfeld C, Pang M, Shigenaga JK et al (1996) Serum leptin levels in the acquired immunodeficiency syndrome. J Clin Endocrinol Metab 81:4342–4346

    Article  PubMed  CAS  Google Scholar 

  12. Simons JP, Schols AM, Campfield LA et al (1997) Plasma concentration of total leptin and human lung-cancer-associated cachexia. Clin Sci (Colch) 93:273–277

    CAS  Google Scholar 

  13. Wallace AM, Sattar N, McMillan DC (1998) Effect of weight loss and the inflammatory response on leptin concentrations in gastrointestinal cancer patients. Clin Cancer Res 4:2977–2979

    PubMed  CAS  Google Scholar 

  14. Takabatake N, Nakamura H, Abe S et al (1999) Circulating leptin in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 159:1215–1219

    PubMed  CAS  Google Scholar 

  15. Schols AM, Creutzberg EC, Buurman WA et al (1999) Plasma leptin is related to proinflammatory status and dietary intake in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:1220–1226

    PubMed  CAS  Google Scholar 

  16. Kaibara A, Moshyedi A, Auffenberg T et al (1998) Leptin produces anorexia and weight loss without inducing an acute phase response or protein wasting. Am J Physiol 274:R1518–R1525

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Mantovani, G. (2006). Cytokines in Cachexia. In: Mantovani, G., et al. Cachexia and Wasting: A Modern Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-0552-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0552-5_21

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0471-9

  • Online ISBN: 978-88-470-0552-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics