Body Composition: Physiology, Pathophysiology and Methods of Evaluation

  • Giuseppe Sergi
  • Pietro Bonometto
  • Alessandra Coin
  • Giuliano Enzi


Estimating body compartments is fundamental in performing nutritional assessments. In recent years, highly reliable and minimally invasive methods have become available for quantifying body fluids, fat-free mass and fat mass. These measurements integrate the clinical evaluation, overcoming the drawbacks of anthropometric measurements used as indirect parameters of nutritional status and body composition.


Body Composition Total Body Water Bioelectrical Impedance Analysis Body Cell Mass Appendicular Skeletal Muscle Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson KM, Weinsier RL, Long CL, Schutz Y (1992) Prediction of resting energy expenditure from fatfree mass and fat mass. Am J Clin Nutr 56:848–856PubMedGoogle Scholar
  2. 2.
    Ellis KJ, Jasumura S, Morgan WD (eds) (1987) In vivo body composition studies. Institute of Physical Science in Medicine, LondonGoogle Scholar
  3. 3.
    Vaisman N, Pencharz PB, Koren G, Johnson JK (1987) Comparison of oral and intravenous Heitmann administration of sodium bromide for extracellular water measurements. Am J Clin Nutr 46:1–4PubMedGoogle Scholar
  4. 4.
    Shike M, Russel DM, Detsky AS et al (1984) Changes in body composition in patients with small-cell cancer. The effect of total parenteral nutrition as an adjunct to chemotherapy. Ann Intern Med 101:303–309PubMedGoogle Scholar
  5. 5.
    Toth MJ, Gottlieb SS, Goran MI et al (1997) Daily energy expenditure in free-living heart failure patients. Am J Physiol 272:E469–E475PubMedGoogle Scholar
  6. 6.
    Mitch WE (1998) Mechanisms causing loss of lean body mass in kidney disease. Robert H Herman Memorial Award in Clinical Nutrition Lecture 1997. Am J Clin Nutr 67:359–366PubMedGoogle Scholar
  7. 7.
    Roubenoff R, Roubenoff RA, Cannon JG et al (1994) Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 93:2379–2386PubMedCrossRefGoogle Scholar
  8. 8.
    Mitch WE, Goldberg AL (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. NEJM 335:1897–1905PubMedCrossRefGoogle Scholar
  9. 9.
    Fong Y, Moldawer LL, Marano M et al (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256:R659–R665PubMedGoogle Scholar
  10. 10.
    Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871PubMedCrossRefGoogle Scholar
  11. 11.
    Kaibara A, Moshyedi A, Auffenberg T et al (1998) Leptin produces anorexia and weight loss without inducing an acute phase response or protein wasting. Am J Physiol 274:R1518–R1525PubMedGoogle Scholar
  12. 12.
    Hyltander A, Daneryd P, Sandstrom R et al (2000) Beta-adrenoceptor activity and resting energy metabolism in weight losing cancer patients. Eur J Cancer 36:330–334PubMedCrossRefGoogle Scholar
  13. 13.
    Keys A, Brozek J (1953) Body fat in adult men. Physiol Rev 33:245–325PubMedGoogle Scholar
  14. 14.
    Brozek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 110:113–140PubMedCrossRefGoogle Scholar
  15. 15.
    Burkinshaw L, Cotes JE (1973) Body potassium and fat-free mass. Clin Sci 44:621–625PubMedGoogle Scholar
  16. 16.
    Sergi G, Bertani R, Calliari I et al (2003) Total body water and extracellular water measurements through in vivo dilution of D2O and bromide as tracers. Spectroscopy 17:603–611Google Scholar
  17. 17.
    Bartoli WP, Davis JM, Pate RR et al (1993) Weekly variability in total body water using 2H2O dilution in college-age males. Med Sci Sports Exerc 25:1422–1428PubMedGoogle Scholar
  18. 18.
    Pace N, Rathburn EN (1945) Studies on body composition. III The body water and chemically combined nitrogen content in relation to fat content. J Biol Chem 158:685–691Google Scholar
  19. 19.
    Sheng HP, Huggins RA (1979) A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr 32:630–647PubMedGoogle Scholar
  20. 20.
    Sergi G, Perini P, Bussolotto M et al (1993) Body composition study in the elderly: comparison between tritium dilution method and dual photon absorptiometry. J Gerontol 48:M244–M248PubMedGoogle Scholar
  21. 21.
    Sergi G, Lupoli L, Volpato S et al (2004) Body fluid distribution in elderly subjects affected with congestive heart failure. Ann Clin Lab Sci 34:416–422PubMedGoogle Scholar
  22. 22.
    Shao HR, Liu QX, Enzi G et al (1990) Evaluation of the extracellular water in human body by determination of Br concentration in blood plasma. Nucl Instrum Meth Phys Res B49:238–240Google Scholar
  23. 23.
    Heitmann BL (1994) Impedance: a valid method in assessment of body composition? Eur J Clin Nutr 48:228–240PubMedGoogle Scholar
  24. 24.
    Thomasset A (1963) Bio-electric properties of tissues. Estimation by measurement of impedance of extracellular ionic strength and intracellular ionic strength in the clinic. Lyon Med 209:1325–1350PubMedGoogle Scholar
  25. 25.
    Kushner RF, Schoeller MD (1986) Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 44:417–424PubMedGoogle Scholar
  26. 26.
    Kushner RF, Schoeller DA, Fjeld CR, Danford L (1992) Is the impedance index (Ht/R) significant in predicting total body water? Am J Clin Nutr 56:835–839PubMedGoogle Scholar
  27. 27.
    Visser M, Deurenberg P, van Staveren WA (1995) Multi-frequency bioelectrical impedance for assessing total body water and extracellular water in elderly subjects. Eur J Clin Nutr 49:256–266PubMedGoogle Scholar
  28. 28.
    Sun SS, Chumlea WC, Heymsfield SB et al (2003) Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 77:331–340PubMedGoogle Scholar
  29. 29.
    Segal KR, van Loan M, Fitzgerald PI et al (1988) Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 47:7–14PubMedGoogle Scholar
  30. 30.
    Rising R, Swinburn B, Larson K, Ravussin E (1991) Body composition in Pima Indians: validation of bioelectrical resistance. Am J Clin Nutr 53:594–598PubMedGoogle Scholar
  31. 31.
    Roubenoff R, Baumgartner RN, Harris TB et al (1997) Application of bioelectrical impedance analysis to elderly populations. J Gerontol A Biol Sci Med Sci 52:M129–M136PubMedGoogle Scholar
  32. 32.
    Kyle UG, Genton L, Karsegard L et al (2001) Single prediction equation for bioelectrical impedance analysis in adults 20–94 years. Nutrition 17:248–253PubMedCrossRefGoogle Scholar
  33. 33.
    Lupoli L, Sergi G, Coin A et al (2004) Body composition in underweight elderly subjects: reliability of bioelectrical impedance analysis. Clin Nutr 23:1371–1380PubMedGoogle Scholar
  34. 34.
    Sergi G, Bussolotto M, Perini P et al (1994) Accuracy of bioelectrical impedance analysis in estimation of extracellular space in healthy subjects and in fluid retention states. Ann Nutr Metab 38:158–165PubMedCrossRefGoogle Scholar
  35. 35.
    Gudivaka R, Schoeller DA, Kushner RF et al (1999) Singleand multifrequency models for bioelectrical impedance analysis of body water compartments. J Appl Physiol 87:1087–1096PubMedGoogle Scholar
  36. 36.
    Cohn SH, Palmer HE (1974) Recent advances in whole body counting: a review. J Nucl Biol Med 1:155–165CrossRefGoogle Scholar
  37. 37.
    Forbes GB, Gallup J, Hursh JB (1961) Estimation of total body fat from potassium-40 content. Sciences 133:101–102Google Scholar
  38. 38.
    Van Loan MD, Mayclin PL (1992) Body composition assessment: dual energy X ray absorptiometry (DEXA) compared to reference methods. Eur J Clin Nutr 46:125–130PubMedGoogle Scholar
  39. 39.
    Economos CD, Nelson ME, Fiatarone MA et al (1997) A multi-center comparison of dual energy X-ray absorptiometers: in vivo and in vitro soft tissue measurement. Eur J Clin Nutr 51:312–317PubMedCrossRefGoogle Scholar
  40. 40.
    Figueroa-Colon R, Mayo MS, Treuth MS et al (1998) Reproducibility of dual-energy X-ray absorptiometry measurements in prepubertal girls. Obes Res 6:262–267PubMedGoogle Scholar
  41. 41.
    Fuller NJ, Hardingham CR, Graves M et al (1999) Assessment of limb muscle and adipose tissue by dual-energy X-ray absorptiometry using magnetic resonance imaging for comparison. Int J Obes Relat Metab Disord 23:1295–1302PubMedCrossRefGoogle Scholar
  42. 42.
    Houtkooper LB, Going SB, Sproul J et al (2000) Comparison of methods for assessing body-composition changes over 1 y in postmenopausal women. Am J Clin Nutr 72:401–406PubMedGoogle Scholar
  43. 43.
    Salamone LM, Fuerst T, Visser M et al (2000) Measurement of fat mass using DEXA: a validation study in elderly adults. J Appl Physiol 89:345–352PubMedGoogle Scholar
  44. 44.
    Visser M, Fuerst T, Lang T et al (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. J Appl Physiol 87:1513–1520PubMedGoogle Scholar
  45. 45.
    Visser M, Pahor M, Tylavsky F et al (2003) Oneand two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J Appl Physiol 94:2368–2374PubMedCrossRefGoogle Scholar
  46. 46.
    Heymsfield SB, Smith R, Aulet M et al (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218PubMedGoogle Scholar
  47. 47.
    Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763PubMedGoogle Scholar
  48. 48.
    Lukaski HC (1987) Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 46:537–556PubMedGoogle Scholar
  49. 49.
    Vartsky D, Ellis KJ, Vaswani AN et al (1984) An improved calibration for the in vivo determination of body nitrogen, hydrogen, and fat. Phys Med Biol 29:209–218PubMedCrossRefGoogle Scholar
  50. 50.
    Cohn SH, Vartsky D, Yasumura S et al (1983) Indexes of body cell mass: nitrogen versus potassium. Am J Physiol 244:E305–E310PubMedGoogle Scholar
  51. 51.
    Borkan GA, Gerzof SG, Robbins AH et al (1982) Assessment of abdominal fat content by computed tomography. Am J Clin Nutr 36:172–177PubMedGoogle Scholar
  52. 52.
    Borkan GA, Hults DE, Gerzof SG, Robbins AH (1985) Comparison of body composition in middle-aged and elderly males using computed tomography. Am J Phys Anthropol 66:289–295PubMedCrossRefGoogle Scholar
  53. 53.
    Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724PubMedCrossRefGoogle Scholar
  54. 54.
    Penninx BW, Pahor M, Cesari M et al (2004) Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc 52:719–724PubMedCrossRefGoogle Scholar
  55. 55.
    Fowler PA, Fuller MF, Glasbey CA et al (1991) Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nutr 54:18–25PubMedGoogle Scholar
  56. 56.
    Murphy WA, Totty WG, Caroll JE (1986) MRI of normal and pathologic skeletal muscle. Am J Roentoenol 146:565–574Google Scholar
  57. 57.
    Ross R, Shaw KD, Martel Y et al (1993) Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Med Nutr 57:470–475Google Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Giuseppe Sergi
    • 1
  • Pietro Bonometto
    • 1
  • Alessandra Coin
    • 1
  • Giuliano Enzi
    • 1
  1. 1.Department of Medical and Surgical Sciences, Geriatrics DivisionUniversity of PaduaPaduaItaly

Personalised recommendations