Advertisement

Probability of Traffic Violations and Risk of Crime: A Model of Economic Agent Behavior

  • J. Mimkes
Part of the New Economic Windows book series (NEW)

Abstract

The behavior of traffic agents is an important topic of recent discussions in social and economic sciences (Helbing, 2002). The methods are generally based on the Focker Planck equation or master equations (Weidlich, 1972, 2000). The present investigations are based on the statistics of binary decisions with constraints. This method is known as the Lagrange LeChatelier principle of least pressure in many-decisions systems (Mimkes, 1995, 2000). The results are compared to data for traffic violations and other criminal acts like shop lifting, theft and murder.

Keywords

Parking Space Economic Science Negative Exponent Intermittency Control Traffic Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BKA (2002): Polizeiliche Kriminalstaistik 2002 der Bundesrepublik Deutschland, http://www.bka.de.Google Scholar
  2. Fowler, R. and Guggenheim, E. A., (1960): Statistical Thermodynamics Cambridge University Press.Google Scholar
  3. Helbing, D., (2002): Volatile decision dynamics: experiments, stochastic description, intermittency control and traffic optimization, New J. Phys. 4 33.CrossRefADSGoogle Scholar
  4. KBA (2002): Kraftfahrt Bundesamt Flensburg 2003 http://www.kba.de.Google Scholar
  5. Mimkes, J., (1995): Binary Alloys as a Model for Multicultural Society J. Thermal Anal. 43: 521–537.CrossRefGoogle Scholar
  6. Mimkes, J., (2000): Die familiale Integration von Zuwanderern und Konfessionsgruppen — zur Bedeutung von Toleranz und Heiratsmarkt in Partnerwahl und Heiratsmuster, Klein, Th., Heidelberg, Editor, Verlag Leske und Budrich, Leverkusen.Google Scholar
  7. Mimkes, J., (2000): Society as a many-particle System, J. Thermal Analysis 60:1055–1069.CrossRefGoogle Scholar
  8. Stanley, H. E.; L. A. N. Amarala, D. Canningb, P. Gopikrishnana, Y. Leea and Y. Liua, (1999): Econophysics: Can physicists contribute to the science of economics? Physica A, 269: 156–169.CrossRefGoogle Scholar
  9. Stanley, M. H. R.; L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, and H. E. Stanley, (1996): Scaling Behavior in the Growth of Companies, Nature 379, 804–806.CrossRefADSGoogle Scholar
  10. Weidlich, W., (1972): The use of statistical models in sociology, Collective Phenomena 1, 51.Google Scholar
  11. Weidlich, W., (2000): Sociodynamics, Amsterdam: Harwood Acad. Publ.MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • J. Mimkes
    • 1
  1. 1.Physics DepartmentUniversity of PaderbornGermany

Personalised recommendations