Basic concepts of Magnetic Resonance Imaging

  • Alessandro Lascialfari
  • Maurizio Corti


Fundamental aspects of the Magnetic Resonance Imaging (MRI) technique which is one of the preferred modalities for non-invasive clinical applications and “in vivo” medical and biological research, are presented. The physical principles of MRI and protocols recently introduced to investigate the microscopic details of pathological cerebral damages are introduced. The main results obtained from the analysis of T2 relaxation curves are briefly summarized.


Spin Echo Relaxation Curve Spin Echo Sequence Cytotoxic Edema Magnetic Resonance Imaging Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Abragam, “the principles of Nuclear Magnetism”, Clarendon Press (Oxford, 1961)Google Scholar
  2. 2.
    for an introduction to NMR in liquids see e.g. R. V. Parish, “NMR; NQR, EPR and Mossbauer spectroscopy in inorganic chemistry”, Ellis Horwood (Chichester, 1990)Google Scholar
  3. 3.
    E. Mark Haacke, Robert W. Brown, Michael R. Thompson, Ramesh Venkatesan. “Magnetic Resonance Imaging. Physical Principles and Sequence Design”, Wiley-Liss (New York, 1999)Google Scholar
  4. 4.
    Paul T. Callaghan, “Principles of Nuclear Magnetic Resonance Microscopy”, Oxford University Press (Oxford, 1994)Google Scholar
  5. 5.
    L. Cei, A. La Fianza, C. Baluce, “Tecniche di Tomografia Computerizzata e Risonanza Magnetica nella Diagnostica per Immagin”, Societa’ Editrice Universo (Roma, 2001)Google Scholar
  6. 6.
    R.R. Ernst, W.A. Anderser, Rev. Sci. Intrum. 37, 93 (1966)CrossRefADSGoogle Scholar
  7. 7.
    R.N. Muller. Contrast agents in whole body magnetic resonance: operating mechanisms, Encyclopedia of nuclear magnetic resonance, eds. Wiley J. and Sons; 1438–1444 (N.Y. 1996)Google Scholar
  8. 8.
    S. Aime, M. Botta et al., Chem.Soc.Rev. 27, 19 (1998); P. Caravan, J.J.Ellison et al., Chem.Soc.Rev. 99, 2293 (1999)CrossRefGoogle Scholar
  9. 9.
    Kamil Ugurbil, Wei Chen, Xiaoping Hu, Seong-Gi Kim, Xiao-Hung Zhu. Functional MRI at high fields: practice and utility.Google Scholar
  10. 10.
    see e.g., Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C, Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI, Magn. Res. Med. 51, 103–114 (2004), and references therinCrossRefGoogle Scholar
  11. 11.
    U. Guerrini, L. Sironi, E. Tremoli, M. Cimino, B. Pollo, A.M. Calvio, R. Paoletti, M. Asdente. New insights into brain damage in stroke-prone rats: a nuclear magnetic imaging study. Sroke 33, 825–830 (2002)Google Scholar
  12. 12.
    L. Sironi, E. Tremoli, I. Miller, U. Guerrini, A.M. Calvio, I. Eberini, M. Gemeiner, M. Asdente, R. Paoletti, E. Gianazza. Acute-phase proteins before cerebral ischemia in stroke-prone rats. Identification by proteomics. Stoke 32, 753–760 (2001)Google Scholar
  13. 13.
    L. Sironi, U. Guerrini, E. Tremoli, I. Miller, P. Gelosa, A. Lascialfari, I. Zucca, I. Eberini, M. Gemeiner, R. Paoletti, E. Gianazza. Analysis of patological events at the onset of brain damage in stroke-prone rats: a proteomics and magnetic resonance imaging approach. Journal of Neuroscience Research 78, 115–122 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Lascialfari, I. Zucca, M. Cimino, U. Guerrini, R. Paoletti, L. Sironi, E. Tremoli, V. Lorusso and M. Asdente. Multiexponential analysis of MRI T2-relaxation in cerebral damaged rats with and without a paramagnetic Gd-based contrast agent. Mag. Res. Med., 53, 1326 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Takahashi, B. Fritz-Zieroth, T. Chikugo, H. Ogawa. Differentiation of chronic lesions after stroke in stroke-prone spontaneously hypertensive rats using diffusion weighted MRI. NMR 30, 485–488 (1993).Google Scholar
  16. 16.
    A. Lascialfari, I. Zucca, M. Cimino, U. Guerrini, R. Paoletti, L. Sironi, E. Tremoli, “Guerbet Group”, work in progressGoogle Scholar
  17. 17.
    M.R. Crain, W.T.C. Yuh, G.M. Greene, D.J. Loes, T.J. Ryals, Y. Sato, M.N. Hart. Cerebral ischemia: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol 12, 631–639 (1991)Google Scholar
  18. 18.
    R.O. Lindsey, Z.F. Yetkin, R. Prost, V.M. Haughton. Effect of dose and field strength on enhancement with paramagnetic contrast media. AJNR Am J Neuroradiol. 15, 1849–1852 (1994)Google Scholar
  19. 19.
    V. P. Mathews, L.H. Monsein, C.A. Pardo, R.N. Bryan. Histologic abnormalities associated with gadolinium enhancement on MR in the initial hours of experimental cerebral infarction. AJNR Am J Neuroradiol 15, 573–579 (1994)Google Scholar
  20. 20.
    S. Imakita, T. Nishimura, N. Yamada, H. Naito, M. Takamiya, Y. Yamada, J. Minamikawa, H. Kikuchi, M. Nakamura, T. Sawada, J. Choki, T. Yamaguchi. Magnetic resonance imaging of cerebral infarction: time course of Gd-DTPA enhancement and CT comparison. Neuroradiology 30, 372–378 (1988)CrossRefGoogle Scholar
  21. 21.
    R.A. Knight, P.B. Barker, S.C. Fagan, Y. Li, M.A. Jacobs, K.M.A. Welch. Prediction of impending hemorrhagic transformation in ischemic stoke using magnetic resonance imaging in rats. Stroke 29, 144–151 (1998)Google Scholar
  22. 22.
    W. Reith, M. Forsting, H. Vogler, S. Heiland, K. Sartor, M.R. Early. Detection of experimentally induced cerebral ischemia using magnetic susceptibility contrast agents: comparison between gadopentetate dimeglumine and iron oxide particles. AJNR Am J Neuroradiol. 16, 53–60 (1995)Google Scholar
  23. 23.
    O. Haraldseth, R.A. Jones, T.B. Muller, A.K. Fahlvik, A.N. Oksendal. Comparison of dysprosium DTPA BMA and superparamagnetic iron oxide particles as susceptibility contrast agents for perfusion imaging of regional cerebral ischemia in the rat. J. Magn. Reson. Imag. 16, 714–717 (1996)CrossRefGoogle Scholar
  24. 24.
    A. Doerfler, T. Engelhorn, S. Heiland, M. Knauth, I. Wanke, M. Forsting. MR contrast agents in acute experimental cerebral ischemia: potential adverse impacts on neurologic outcome and infarction size. J.Magn. Reson. Imag. 11, 418–424 (2000)CrossRefGoogle Scholar
  25. 25.
    M. Takahashi, B. Fritz-Zieroth, T. Chikugo, H. Ogawa. Differentiation of chronic lesions after stroke in stroke-prone spontaneously hypertensive rats using diffusion weighted MRI. MRM. 30, 485–488 (1993)Google Scholar
  26. 26.
    R.M. Kroeker, R.M. Henkelman. Analysis of biological NMR relaxation data with continuous distributions of relaxation times. J. Magn. Reson. 69, 218–235 (1986)Google Scholar
  27. 27.
    K.P. Whittall, M.J. Bronskill, R.M. Henkelman. Investigation of analysis techniques for complicated NMR relaxation data. J. Magn. Reson. 95, 221–234 (1991)Google Scholar
  28. 28.
    K.P. Whittall, A.L. MacKay. Quantitative interpretation of NMR relaxation data. J. Magn. Reson. 84, 134–152 (1989)Google Scholar
  29. 29.
    A.D. Watson, S.M. Rocklage. Theory and mechanisms of contrast-enhancing agents. Magnetic Resonance Imaging of the Body. Second Edition, Raven Press, New York, (1992); 1257–1287.Google Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • Alessandro Lascialfari
    • 1
    • 2
    • 3
  • Maurizio Corti
    • 1
  1. 1.Department of Physics “A. Volta”University of Pavia, and CNR-INFM research unitPaviaItaly
  2. 2.S3-CNR-INFMModenaItaly
  3. 3.Institute of General Physiology and Biological Chemistry “G. Esposito”University of MilanoMilanoItaly

Personalised recommendations