Advertisement

IFAE 2006 pp 265-268 | Cite as

Prospects for heavy flavor physics at LHC

  • G. Passaleva
Conference paper

Abstract

In the last decade, the flavor sector of the Standard Model, parametrized by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1], has been studied and constrained with unprecedented precision thanks to the beautiful results obtained on Kaon CP violation experiments E731, KLOE and NA48, by the B-factories KEKB and PEPII, by the charm factory CESR and by the experiments at Tevatron. The impact of these results on the experimental tests of the Standard Model is pictorially represented on the \( \bar \rho - \bar \eta \) plane where the constraints on the Unitarity Triangle (UT) are displayed [2]. The Large Hadron Collider (LHC) in construction at CERN, is expected to deliver a large amount of events containing heavy flavors due to the high luminosity (1032–1034 cm−2s−1) and high production cross sections (σ(bb) ∼ 0.5mb).

Keywords

Large Hadron Collider Atlas Collaboration High Luminosity LHCb Collaboration Rare Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Cabibbo: Phys. Rev. Lett. 10, 531 (1963) M. Kobayashi and T. Maskawa: Prog. Theor. Phys. 49, 652 (1973)CrossRefADSGoogle Scholar
  2. 2.
    M. Bona et al., UTfit Collaboration: hep-ph/0606167 (2006)Google Scholar
  3. 3.
    ATLAS Collaboration: CERN-LHCC-99-014 (1999)Google Scholar
  4. 4.
    CMS Collaboration: CERN/LHCC 97-10 (1997) CERN/LHCC 97-33, (1997) CERN/LHCC 97-32 (1997) CERN/LHCC 98-06 (1998)Google Scholar
  5. 5.
    LHCb Collaboration: CERN-LHCC-2003-030 (2003)Google Scholar
  6. 6.
    ATLAS Collaboration: CERN/LHCC/2003-022 (2003)Google Scholar
  7. 7.
    CMS Collaboration: CERN/LHCC 2000-38 (2000)Google Scholar
  8. 8.
    W. Adam et al.: Eur. Phys. J. C 46, 605 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Smizanska: Eur. Phys. J. C 34, S385 (2004).CrossRefADSGoogle Scholar
  10. 10.
    LHCb Collaboration: CERN-LHCC-2003-031 (2003)Google Scholar
  11. 11.
    LHCb Collaboration: LHCB 2003-115 (2003)Google Scholar
  12. 12.
    S. Easo et al.: Nucl. Instrum. Meth. A 553, 333 (2005)CrossRefADSGoogle Scholar
  13. 13.
    A. Abulencia et al., CDF Collaboration: Phys. Rev. Lett. 97, 062003 (2006)CrossRefADSGoogle Scholar
  14. 14.
    P. Ball and R. Fleischer: hep-ph/0604249 (2006).Google Scholar
  15. 15.
    Z. Ligeti, M. Papucci and G. Perez: hep-ph/0604112 (2006)Google Scholar
  16. 16.
    R. Jones, ATLAS Collaboration: Nucl. Phys. Proc. Suppl. 156, 147 (2006)CrossRefADSGoogle Scholar
  17. 17.
    CMS Collaboration: CERN/LHCC/2006-021, 113 (2006)Google Scholar
  18. 18.
    M. Bona et al., UTfit Collaboration: hep-ph/0605213 (2006)Google Scholar
  19. 19.
    C. Padilla, ATLAS Collaboration: Nucl. Phys. Proc. Suppl. 156, 99 (2006) N. Nikitin et al., ATLAS Collaboration: Nucl. Phys. Proc. Suppl. 156, 119 (2006)CrossRefADSGoogle Scholar
  20. 20.
    I. Belyaev, LHCb Collaboration: Czech. J. Phys. 55, B485 (2005)Google Scholar
  21. 21.
    A. Ali: Nucl. Phys. Proc. Suppl. 59, 86 (1997)CrossRefADSGoogle Scholar
  22. 22.
    A. Nikitenko, A. Starodumov and N. Stepanov, CMS Collaboration: hepph/9907256 (1999)Google Scholar
  23. 23.
    R. Aleksan, I. Dunietz and B. Kayser: Z. Phys. C 54, 653 (1992)CrossRefADSGoogle Scholar
  24. 24.
    R. Fleischer: Phys. Lett. B 459, 306 (1999)CrossRefADSGoogle Scholar
  25. 25.
    M. Gronau and D. Wyler: Phys. Lett. B 265, 172 (1991)CrossRefADSGoogle Scholar
  26. 26.
    D. Atwood, I. Dunietz and A. Soni: Phys. Rev. Lett. 78, 3257 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • G. Passaleva
    • 1
  1. 1.INFN-FirenzeSesto Fiorentino (FIRENZE)Italy

Personalised recommendations