Skip to main content

Why do Hurst Exponents of Traded Value Increase as the Logarithm of Company Size?

  • Conference paper

Part of the book series: New Economic Windows ((NEW))

Summary

The common assumption of universal behavior in stock market data can sometimes lead to false conclusions. In statistical physics, the Hurst exponents characterizing long-range correlations are often closely related to universal exponents. We show, that in the case of time series of the traded value, these Hurst exponents increase logarithmically with company size, and thus are non-universal. Moreover, the average transaction size shows scaling with the mean transaction frequency for large enough companies. We present a phenomenological scaling framework that properly accounts for such dependencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Vicsek, editor. Fluctuations and Scaling in Biology. Oxford University Press, USA, 2001.

    Google Scholar 

  2. P.W. Anderson, editor. The Economy As an Evolving Complex System (Santa Fe Institute Studies in the Sciences of Complexity Proceedings), 1988.

    Google Scholar 

  3. J. Kertész and I. Kondor, editors. Econophysics: An Emergent Science, http://newton.phy.bme.hu/~kullmann/Egyetem/konyv.html. 1997.

    Google Scholar 

  4. J.-P. Bouchaud and M. Potters. Theory of Financial Risk. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  5. R.N. Mantegna and H.E. Stanley. Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, 1999.

    Google Scholar 

  6. M. Gallegatti, S. Keen, T. Luxand P. Ormerod. Worrying trends in econophysics. http://www.unifr.ch/econophysics,doc/0601001; to appear in Physica A, Proceedings of the World Econophysics Colloquium, Canberra, 2005

    Google Scholar 

  7. Z. Eisler and J. Kertész. Scaling theory of temporal correlations and size dependent fluctuations in the traded value of stocks. arXiv:physics/0510058, 2005. to appear in Phys. Rev. E.

    Google Scholar 

  8. Trades and Quotes Database for 1993–2003, New York Stock Exchange, New York.

    Google Scholar 

  9. Z. Eisler, J. Kertész, S.-H. Yook, and A.-L. Barabási. Multiscaling and non-universality in fluctuations of driven complex systems. Europhys. Lett., 69:664–670, 2005.

    Article  ADS  Google Scholar 

  10. Z. Eisler and J. Kertész. Size matters: some stylized facts of the market revisited. arXiv:physics/0508156, 2005.

    Google Scholar 

  11. G. Zumbach. How trading activity scales with company size in the FTSE 100. Quantitative Finance, 4:441–456, 2004.

    Article  Google Scholar 

  12. P. Gopikrishnan, V. Plerou, X. Gabaix, and H.E. Stanley. Statistical properties of share volume traded in financial markets. Phys. Rev. E, 62:4493–4496, 2000.

    Article  ADS  Google Scholar 

  13. R. Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1:223–236, 2001.

    Article  Google Scholar 

  14. G. Bonanno, F. Lillo, and R.N. Mantegna. Dynamics of the number of trades of financial securities. Physica A, 280:136–141, 2000.

    Article  ADS  Google Scholar 

  15. S.M.D. Queirós. On the distribution of high-frequency stock market traded volume: a dynamical scenario. Europhys. Lett., 71:339–345, 2005.

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Vicsek. Fractal Growth Phenomena. World Scientific Publishing, 1992.

    Google Scholar 

  17. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H.E. Stanley. Physica A, 316:87–114, 2002.

    Article  MATH  ADS  Google Scholar 

  18. M.A. de Menezes and A.-L. Barabási. Fluctuations in network dynamics. Phys. Rev. Lett., 92:28701, 2004.

    Article  Google Scholar 

  19. Z. Eisler and J. Kertész. Random walks on complex networks with inhomogeneous impact. Phys. Rev. E, 71:057104, 2005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this paper

Cite this paper

Eisler, Z., Kertész, J. (2006). Why do Hurst Exponents of Traded Value Increase as the Logarithm of Company Size?. In: Chatterjee, A., Chakrabarti, B.K. (eds) Econophysics of Stock and other Markets. New Economic Windows. Springer, Milano. https://doi.org/10.1007/978-88-470-0502-0_5

Download citation

Publish with us

Policies and ethics