Advertisement

Comments on “Worrying Trends in Econophysics”: Income Distribution Models

  • Peter Richmond
  • Bikas K. Chakrabarti
  • Arnab Chatterjee
  • John Angle
Part of the New Economic Windows book series (NEW)

Abstract

In Econophysics-Kolkata I, we had concentrated on collecting the data for wealth and income distribution in various countries and the models (of econophysics) to comprehend or explain those distributions. As such, there have been several criticisms by economists on these modelling attempts (see, Econophysics of Wealth Distributions, Eds. A. Chatterjee, S. Yarlagadda, B. K. Chakrabarti, Springer-Verlag, Milan, 2005, and also New Scientist, March 12, 2005 issue, pp. 6–7). Recently, M. Gallegati, S. Keen, T. Lux and P. Ormerod (http://www.unifr.ch/econophysics; doc/0601001, Physica A [in press]) have published a criticism of several of these modelling efforts. In particular, the various wealth distribution model papers published in the Proceedings of Ecconophys-Kolkata I (mentioned above) have been referred to. In this Comments and Discussion section (of Econophys-Kolkata II) therefore we include a few responses to these criticisms, by physicists and social statistician.

Keywords

Income Distribution American Statistical Association Labor Income Wealth Distribution Wage Income 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angle J (1983) Proc. American Statistical Association, Social Statistics Section. pp. 395–400. Alexandria, VA: American Statistical AssociationGoogle Scholar
  2. 2.
    Angle J (1986) Social Forces 65:293–326CrossRefGoogle Scholar
  3. 3.
    Angle J (1986) Proc. American Statistical Association, Social Statistics Section. pp. 259–263. Alexandria, VA: American Statistical AssociationGoogle Scholar
  4. 4.
    Angle J (1990) Proc. American Statistical Association, Social Statistics Section. pp. 279–284. Alexandria, VA: American Statistical AssociationGoogle Scholar
  5. 5.
    Angle J (1992) Journal of Mathematical Sociology 17:77–98CrossRefGoogle Scholar
  6. 6.
    Angle J (1993) Journal of Mathematical Sociology 18:27–46MATHCrossRefGoogle Scholar
  7. 7.
    Angle J (1993) Proc. American Statistical Association, Social Statistics Section. pp. 197–202. Alexandria, VA: American Statistical AssociationGoogle Scholar
  8. 8.
    Angle J (1996) Journal of Mathematical Sociology. 21:325–358MATHCrossRefGoogle Scholar
  9. 9.
    Angle J (1997) Proc. American Statistical Association, Social Statistics Section. pp. 388–393. Alexandria, VA: American Statistical AssociationGoogle Scholar
  10. 10.
    Angle J (1998) Proc. American Statistical Association, Social Statistics Section. pp. 138–143. Alexandria, VA: American Statistical AssociationGoogle Scholar
  11. 11.
    Angle J (1999) Proc. 1999 Federal Forecasters’ Conference. pp. 161–169. Washington, DC: U.S. Government Printing OfficeGoogle Scholar
  12. 12.
    Angle J (1999) Proc. American Statistical Association, Social Statistics Section. pp. 331–336. Alexandria, VA: American Statistical AssociationGoogle Scholar
  13. 13.
    Angle J (2000) Proc. American Statistical Association, Social Statistics Section. pp. 270–275. Alexandria, VA: American Statistical Association.Google Scholar
  14. 14.
    Angle J (2001) Proc. American Statistical Association, Social Statistics Section. [CD-ROM], Alexandria, VA: American Statistical AssociationGoogle Scholar
  15. 15.
    Angle J (2002) Journal of Mathematical Sociology. 26:217–270MATHCrossRefGoogle Scholar
  16. 16.
    Angle J (2002) Proc. 2002 Federal Forecasters’ Conference. Washington, DC: U.S. Government Printing OfficeGoogle Scholar
  17. 17.
    Angle J (2002) Proc. American Statistical Association, Business and Economic Statistics Section. [CD-ROM], Alexandria, VA: American Statistical AssociationGoogle Scholar
  18. 18.
    Angle J (2003) Estadistica. 55:59–93MathSciNetGoogle Scholar
  19. 19.
    Angle J (2003) An entry in T. Liao, et al., (eds.), The Encyclopedia of Social Science Research Methods. Volume 2: 488–490. Thousand Oaks, CA: SageGoogle Scholar
  20. 20.
    Angle J (2003) Proc. Conference of the Federal Committee on Statistical Methodology, November, 2003, Arlington, Virginia [http://www.fcsm.gov/events/papers2003.html].Google Scholar
  21. 21.
    Angle J (2005) Paper presented to the First General Scholarly Meeting, Society for Anthropological Science. February, 2005, Santa Fe, New MexicoGoogle Scholar
  22. 22.
    Angle J (2006) Physica A 367:388–414CrossRefADSGoogle Scholar
  23. 23.
    Kleiber C, Kotz S (2003) Statistical Size Distributions in Economics and Actuarial Sciences. Wiley, Hoboken, New JerseyMATHCrossRefGoogle Scholar
  24. 24.
    Chakraborti A, Chakrabarti BK (2000) The European Physical Journal B 17:167–170CrossRefADSGoogle Scholar
  25. 25.
    Chatterjee A, Chakrabarti BK, Manna SS (2003) Physica Scripta T 106:36–39CrossRefADSGoogle Scholar
  26. 26.
    Chatterjee A, Chakrabarti BK, Manna SS (2004) Physica A 335:155–163CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Patriarca M, Chakraborti A, Kaski K (2004) Physical Review E 70:016104CrossRefADSGoogle Scholar
  28. 28.
    Chatterjee A, Chakrabarti BK, Stinchcombe RB (2005) Physical Review E 72:026126CrossRefADSGoogle Scholar
  29. 29.
    Patriarca M, Chakraborti A, Kaski K, Germano G (2005) arXiv:physics/0504153v1Google Scholar
  30. 30.
    Chatterjee A, Chakrabarti BK, Stinchcombe RB (2005) in H. Takayasu (ed.), Practical Fruits in Econophysics, Conference Proceedings of the Third Nikkei Symposium on Econophysics, Tokyo, Japan, 2004. Tokyo: SpringerGoogle Scholar
  31. 31.
    Drăgulescu AA, Yakovenko VM (2000) European Physical Journal B 17:723–729CrossRefADSGoogle Scholar
  32. 32.
    Lux T (2005) in Chatterjee A, Yarlagadda S, Chakrabarti BK (eds.), Econophysics of Wealth Distributions, New Economic Windows Series, Springer Verlag, Milan, pp.51–60CrossRefGoogle Scholar
  33. 33.
    Pareto V (1897) Cours dEconomie Politique. Vol. 2. Lausanne: RougeGoogle Scholar
  34. 34.
    Gibrat R (1931) Les Inégalités Economiques. Paris: Sirey.MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2006

Authors and Affiliations

  • Peter Richmond
    • 1
  • Bikas K. Chakrabarti
    • 2
  • Arnab Chatterjee
    • 2
  • John Angle
    • 3
  1. 1.School of PhysicsUniversity of Dublin, Trinity CollegeDublin 2Ireland
  2. 2.Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational ScienceSaha Institute of Nuclear PhysicsKolkataIndia
  3. 3.Inequality Process InstituteCabin JohnUSA

Personalised recommendations